Broad scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea

none 10 Early ecological research in McMurdo Sound revealed local spatial gradients in community structure associated with variations in anchor ice disturbance, fast ice and snow cover, and the effects of predators. Research contrasting the east and west sides of McMurdo Sound has shown major differ...

Full description

Bibliographic Details
Other Authors: NZL, USA, 100022 - Dipartimento di Scienze della terra, dell'ambiente e della vita, 557
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/11567/304640
Description
Summary:none 10 Early ecological research in McMurdo Sound revealed local spatial gradients in community structure associated with variations in anchor ice disturbance, fast ice and snow cover, and the effects of predators. Research contrasting the east and west sides of McMurdo Sound has shown major differences in benthic communities, which have been attributed to oceanographic influences on the advection of water-column productivity and the frequency of fast ice break-out. Despite these regional and local differences, coastal benthic communities in McMurdo Sound show a high level of stability, and contain a variety of large and potentially very long-lived species. In Terra Nova Bay, about half way along the Victoria Land Coast of the western Ross Sea, the coastal benthic communities provide some insightful contrasts with those in McMurdo Sound. For example, the abundance and depth distribution of dominant species such as Sterechinus neumayeri and Adamussium colbecki are markedly different from McMurdo Sound. In both locations communities dominated by large sponges are most prolific in regions that are free from iceberg disturbance of the seabed. A recent assessment of northern Victoria Land coastal benthic communities, in conjunction with multibeam imagery of the seafloor, further highlights the importance of iceberg disturbance in structuring Antarctic benthic communities. A comparative synthesis of these coastal ecological studies enables us to generate hypotheses concerning the relative importance of different environmental drivers in structuring benthic communities. Overlain on the regular latitudinal shifts in physical factors such as light regime, are regional fluctuations that are controlled by atmospheric and oceanographic circulation patterns and coastal topography/bathymetry. Change in diversity along the western coast of the Ross Sea is predicted to be influenced by three main factors (1) ice disturbance (e.g., via anchor ice and advection of supercooled water or icebergs), (2) photosynthetically ...