DataSheet_1_Patterns of livestock loss associated with a recolonizing wolf population in Germany.docx

Predation on livestock presents a daunting challenge for human–carnivore coexistence in agricultural landscapes. In Germany, the recolonization of wolves is ongoing and its consequences are insufficiently understood. Knowledge about which livestock species are susceptible to wolf predation, which fa...

Full description

Bibliographic Details
Main Authors: Christian Kiffner (5661547), Sandra Uthes (14245847), Emu-Felicitas Ostermann-Miyashita (12102124), Verena Harms (3282573), Hannes J. König (7510139)
Format: Dataset
Language:unknown
Published: 2022
Subjects:
Online Access:https://doi.org/10.3389/fcosc.2022.989368.s001
Description
Summary:Predation on livestock presents a daunting challenge for human–carnivore coexistence in agricultural landscapes. In Germany, the recolonization of wolves is ongoing and its consequences are insufficiently understood. Knowledge about which livestock species are susceptible to wolf predation, which farm types are predisposed to attacks by wolves, and when predation on livestock occurs is valuable for mitigating stakeholder conflicts. To this end, we analyzed 14 years of monitoring data and assessed the livestock prey spectrum, identified correlates between predation on livestock, farm type and livestock category, and described temporal patterns of livestock loss caused by a recolonizing wolf population in the state of Brandenburg (Germany). Among a total of 1387 recorded cases, 42% were unequivocally attributed to wolves (SCALP criteria C1 and C2) and 12% of cases were not caused by wolves. The number of head of livestock killed during a single wolf attack was mediated by farm type and livestock species; losses per event were greater in full-time farms vs. other farm types and greater in sheep, farmed deer and other livestock species, compared to cattle. While sheep were the most commonly killed livestock species, the increase in wolf territories over the investigation period was associated with a widening of the domestic prey species spectrum. Count regression models provided evidence for the increasing frequency of predation events over the 14-year period, along with an exponential increase in wolf territories. Predation on livestock occurred throughout the year, yet seasonality of events was evident and differed across livestock categories. Predation on sheep peaked in the fall, coinciding with the post-weaning period of wolf offspring. Predation on cattle peaked in the spring, coinciding with the cattle calving period. These results call for renewed investment in the implementation of prevention methods for all susceptible domestic species, particularly during times of elevated predation risk.