Exploring information exchange in climate system and climate models

The climate system is one of the classical examples of a complex dynamical system consisting of interacting sub-systems through mass, momentum, and energy exchange across various spatial and temporal scales. This thesis aims to detect and quantify sub-component interactions from an information excha...

Full description

Bibliographic Details
Main Author: Pothapakula, Praveen Kumar
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/70782
https://nbn-resolving.org/urn:nbn:de:hebis:30:3-707824
https://doi.org/10.21248/gups.70782
http://publikationen.ub.uni-frankfurt.de/files/70782/PPK_FB11_library.pdf
Description
Summary:The climate system is one of the classical examples of a complex dynamical system consisting of interacting sub-systems through mass, momentum, and energy exchange across various spatial and temporal scales. This thesis aims to detect and quantify sub-component interactions from an information exchange (IE) perspective. For this purpose, IE estimators derived from information theory are explored and applied to the available climate data obtained from observations, reanalysis, global and regional climate models. Specifically, this thesis investigates the usefulness of information theory methods for process-oriented climate model evaluation. Firstly, methods derived from the concepts of information theory such as transfer entropy and information flow along with their linear and non-linear estimation techniques are initially tested and applied to idealized two-dimensional dynamical systems. The results revealed an expected direction and magnitude of IE providing insights into underlying dynamics. However, as expected the linear estimators are robust for linear systems but fail for non-linear systems. Though the non-linear estimators (kernel and kraskov) showed expected results for all the idealized systems, their free tuning parameters are to be tested for consistent results. Moreover, these methods are sensitive to the available time series length. A real world example case study involving the dynamics between the Indian and Pacific oceans revealed a physically consistent bi-directional IE. However, unexpected IE was detected in the example of North Atlantic and European air temperatures indicating hidden drivers. Though IE provides insights into system dynamics, the availability of time series length and the system at hand must be carefully taken into account before inferring any possible interpretations of the results. Quantifying the IE from El-Ni\~{n}o southern oscillation (ENSO) and Indian Ocean Dipole (IOD) to the Indian Summer Monsoon Rainfall (ISMR) with the observational and reanalysis data sets revealed ...