Microscopic modelling of organic and iron-based superconductors

The term superconductivity describes the phenomenon of vanishing electrical resistivity in a certain material, then called a superconductor, below a critical typically very low temperature. Since the discovery of superconductivity in mercury in 1911 many other superconductors have been found and the...

Full description

Bibliographic Details
Main Author: Guterding, Daniel
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44175
https://nbn-resolving.org/urn:nbn:de:hebis:30:3-441756
http://publikationen.ub.uni-frankfurt.de/files/44175/DGuterdingPhD.pdf
Description
Summary:The term superconductivity describes the phenomenon of vanishing electrical resistivity in a certain material, then called a superconductor, below a critical typically very low temperature. Since the discovery of superconductivity in mercury in 1911 many other superconductors have been found and the critical temperature below which superconductivity occurs could recently be raised to the temperatures encountered in a cold antarctic winter. Superconductors are promising materials for applications. They can serve as nearly loss-free cables for energy transmission, in coils for the generation of high magnetic fields or in various electronic devices, such as detectors for magnetic fields. Despite their obvious advantages, the cost for using superconductors, however, depends a lot on the cooling effort needed to realize the superconducting state. Therefore, the search for a superconductor with critical temperature above room-temperature, which would avoid the need for any specialized cooling system, is one of the main projects of contemporary research in condensed matter physics. While a theory of superconductivity in simple metals has already been developed in the 1950s, it has meanwhile been recognized that many superconductors are unconventional in the sense that their behavior does not follow the aforementioned theory. Unconventional superconductors differ from conventional superconductors mainly by the momentum- and real-space symmetry of the order parameter, which is associated with the superconducting state. While conventional superconductors have a uniform order parameter, unconventional superconductors can have an order parameter that bears structure. Of course, alternative theoretical descriptions have been suggested, but the discussion on the right theory for unconventional superconductivity has not yet been settled. Ultimately, this lack of a general theory of superconductivity prevents a targeted search for the room-temperature superconductor. Any new theoretical approach must, however, prove its value ...