Reconstrução e modelagem in silico da via de biossíntese de ácidos graxos da bactéria psicotrófica Exiguobacterium antarticum linhagem B7

Mathematical modeling in silico based restrictions is an approach adopted by systems biology to analyze metabolic networks. The Gram-positive bacterium Exiguobacterium antarticum B7 is an extremophile organism able to survive in cold environments as glacial ice and permafrost. The ability of these m...

Full description

Bibliographic Details
Main Author: FRANCÊS, Regiane Silva Kawasaki
Other Authors: SCHNEIDER, Maria Paula Cruz, http://lattes.cnpq.br/3901112943859155
Format: Thesis
Language:Portuguese
Published: Universidade Federal do Pará 2017
Subjects:
Ice
Online Access:http://repositorio.ufpa.br/jspui/handle/2011/9052
Description
Summary:Mathematical modeling in silico based restrictions is an approach adopted by systems biology to analyze metabolic networks. The Gram-positive bacterium Exiguobacterium antarticum B7 is an extremophile organism able to survive in cold environments as glacial ice and permafrost. The ability of these microorganisms of adaptation to cold attracts great biotechnological interest. An important factor for the understanding of cold adaptation process is related to the chemical modification of fatty acids constituting the cell membrane of psicotrophic bacteria in order to maintain membrane fluidity to avoid freezing ofthe bacteria. In this work, the metabolic pathway of fatty acid biosynthesis of the bacterium E. antarticum B7 was rebuilt from its annotated genome. The software tools KEGG (Kyoto Encyclopedia of Genes and Genomes) and RAST (The Rapid Annotation Server) were used to generate a preliminary network model. The next step was to cure manually the genomic, biochemical and physiological informations available in different databases and specific literature. During this process, the FabZ and DesK enzymes responsible for adding carbon-carbon unsaturations in the fatty acid chain during synthesis have been identified in the genome, though in a truncated form. The fluxome metabolic pathway was defined, describing the routes of the main reactions since the first monomer, Acetyl-CoA, to the final product, the Hexadecenoic acid. A computational modeling was done using the software MATLAB® with toolboxes and specific tools for systems biology. The quantification of metabolites produced via was performed by the method constraint-based Flux Balance Analysis (FBA). To evaluate the influence of the gene expression in the fluxome analysis, the FBA method was also calculated using the log2FC values obtained in the transcriptome analysis at 0ºC and 37ºC. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway ...