Neritic isotope and sedimentary records of the Eocene-Oligocene greenhouse-icehouse transition: The Calcare di Nago Formation (northern Italy) in a global context

From the Middle Eocene to Early Oligocene, the Earth experienced the most significant climatic cooling of the Cenozoic era. The Eocene-Oligocene transition (EOT) represents the culmination of this climatic cooling, leading to the onset of the Antarctic glaciation and, consequently, to the beginning...

Full description

Bibliographic Details
Published in:Palaeogeography, Palaeoclimatology, Palaeoecology
Main Authors: Jaramillo-vogel, David, Strasser, Andrã©, Frijia, Gianluca, Spezzaferri, Silvia
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/11392/2377992
https://doi.org/10.1016/j.palaeo.2012.11.003
Description
Summary:From the Middle Eocene to Early Oligocene, the Earth experienced the most significant climatic cooling of the Cenozoic era. The Eocene-Oligocene transition (EOT) represents the culmination of this climatic cooling, leading to the onset of the Antarctic glaciation and, consequently, to the beginning of the present-day icehouse world. Whereas the response of deep-sea systems to this climate transition has been widely studied, its impact on the shallow-water carbonate realm is poorly constrained. Here, the sedimentary expression of the EOT in two shallow-marine carbonate successions (Nago and San Valentino, northern Italy) belonging to the Calcare di Nago Formation is presented. The chronostratigraphic framework was constructed by integrating litho-, bio-, and isotope-stratigraphic data (C and Sr isotopes), allowing to correlate these shallow-marine successions with pelagic sections in central Italy (Massignano), Tanzania (TDP Sites 12 and 17), and the Indian Ocean (ODP Site 744). Within several sections in northern Italy, including Nago and San Valentino, a Priabonian (Late Eocene) transgression is recorded. Oxygen isotopes of ODP Site 744 show a coeval negative shift of 0.4, suggesting a glacio-eustatic origin for this transgression. In the Nago and San Valentino sections, no prominent sequence boundary has been detected that would indicate a rapid sea-level drop occurring together with the positive shift in Î ́18O defining the EOT-1 cooling event. Instead, a gradual shallowing of the depositional environment is observed. At TDP Sites 12 and 17, the EOT-1 is followed by a negative shift in Î ́18O of around 0.4, which correlates with a relative deepening of the environment in the studied sections and suggests a melting pulse between EOT-1 and the Oligocene isotope event 1 (Oi-1). The positive Î ́18O shift related to the Oi-1 translates in San Valentino into a change in carbonate factory from a photozoan association dominated by larger benthic foraminifera, corals, and red algae to a heterozoan association ...