A phase field model for brine channels in sea ice
In this paper, we present a phenomenological mathematical model for describing the features of the brine channels in sea ice. The differential system is composed of the Ginzburg–Landau and Cahn–Hilliard equations, in addition to the heat equation, that controls the ice–liquid phase transition by the...
Published in: | Physica B: Condensed Matter |
---|---|
Main Authors: | , , |
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/11392/2362491 https://doi.org/10.1016/j.physb.2013.05.023 |
Summary: | In this paper, we present a phenomenological mathematical model for describing the features of the brine channels in sea ice. The differential system is composed of the Ginzburg–Landau and Cahn–Hilliard equations, in addition to the heat equation, that controls the ice–liquid phase transition by the temperature and hence the establishment of brine channels. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved |
---|