Evidence for global cooling in the Late Cretaceous

Published Article The Late Cretaceous ‘greenhouse’ world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence require...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Linnert, C, Robinson, SA, Lees, JA, Bown, PR, Pérez-Rodríguez, I, Petrizzo, MR, Falzoni, F, Littler, K, Arz, JA, Russell, EE
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2014
Subjects:
CO2
Online Access:http://hdl.handle.net/10871/22246
https://doi.org/10.1038/ncomms5194
Description
Summary:Published Article The Late Cretaceous ‘greenhouse’ world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian–Maastrichtian interval (~83–66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to <~28 °C during the Maastrichtian. The overall stratigraphic trend is remarkably similar to records of high-latitude SSTs and bottom-water temperatures, suggesting that the cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels. We gratefully acknowledge funding from the German Science Foundation (DFG Research Stipend Li 2177/1-1 to C.L.), a Royal Society (UK) URF (S.A.R.), a NERC (UK) grant (J.A.L.), a NERC (UK) studentship (K.L.), The Curry Fund of UCL (C.L.), the Cushman Foundation for Foraminiferal Research (J.M. Resig Fellowship to F.F.) and the Spanish Ministerio de Ciencia e Innovación project CGL2011-22912, co-financed by the European Regional Development Fund (I.P.-R., J.A.A., J.A.L.). We thank T. Dunkley-Jones and J. Young for assistance in collecting the samples and S. Schouten for providing TEX86L data from Demerara Rise. This paper is dedicated to Ernie Russell, who sadly died after submission of the manuscript.