Winds and cloud morphology in the southern polar region of Venus

Spinning on average 60 times faster than the surface, the atmosphere of Venus is superrotational, a state in which the averaged angular momentum is much greater than that corresponding to co-rotation with the solid globe. The rapid mean flow, which is main- tained by momentum transports in the deep...

Full description

Bibliographic Details
Main Authors: Luz, David, Berry, David L., Peralta, Javier, Piccioni, Giuseppe, Drossart, Pierre, VIRTIS-Venus Express Team
Format: Lecture
Language:English
Published: European Planetary Science Congress 2010 2010
Subjects:
Online Access:http://hdl.handle.net/10174/6911
http://meetings.copernicus.org/epsc2010/abstracts/EPSC2010-670.pdf
Description
Summary:Spinning on average 60 times faster than the surface, the atmosphere of Venus is superrotational, a state in which the averaged angular momentum is much greater than that corresponding to co-rotation with the solid globe. The rapid mean flow, which is main- tained by momentum transports in the deep atmo- sphere, presents a puzzle to the atmospheric and plan- etary sciences[1]. After previous missions revealed a bright polar feature at the north pole[9, 10], the Venus Express spacecraft discovered a fast-rotating counter- part at the southern polar region[6], which has been identified as a vortex[2]. The southern polar vortex can be observed at 5.0 μm as a bright, highly vari- able structure which is ∼ 15 K warmer than the sur- rounding air[6]. Although the Venus superrotation has been measured by tracking cloud features at UV and infrared wavelengths[7, 4, 8, 5], the winds in the po- lar region remain poorly constrained. Characterizing the zonal and meridional circulation in this region, as well as their variability, is crucial for understanding the mechanisms that maintain superrotation. In partic- ular, mean zonal winds are necessary to understand the nature of the polar vortex, how it is connected with the general circulation of the atmosphere, and to diagnose momentum transports. Winds at 45 and 65 km can be detected from cloud motion monitoring by the VIRTIS-M subsection on- board the Venus Express (VEX) spacecraft. Our ob- jective is to provide direct wind measurements at cloud tops and in the lower cloud level, in order to help in- terpret the VEX observations concerning the meso- spheric wind regime and temperature fields. In par- ticular, we present direct measurements of the zonal and meridional winds at both altitudes. For this work we selected nadir-pointing, high- spatial resolution VIRTIS data cubes obtained from apocenter in order to minimize the geometric distortion of the polar region. On average these contain lat- itudes extending from the pole to 70S. Since the VIR- TIS field of view is ...