Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub‐tropical North Atlantic Ocean

Nutrient addition bioassay experiments were performed in the low-nutrient, low-chlorophyll oligotrophic subtropical North Atlantic Ocean to investigate the influence of nitrogen (N), phosphorus (P), and/or iron (Fe) on phytoplankton physiology and the limitation of primary productivity or picophytop...

Full description

Bibliographic Details
Main Authors: Moore, C Mark, Mills, Matthew M, Langlois, Rebecca, Milne, Angela, Achterberg, Eric P, La Roche, Julie, Geider, Richard J
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 2008
Subjects:
Online Access:http://repository.essex.ac.uk/338/
Description
Summary:Nutrient addition bioassay experiments were performed in the low-nutrient, low-chlorophyll oligotrophic subtropical North Atlantic Ocean to investigate the influence of nitrogen (N), phosphorus (P), and/or iron (Fe) on phytoplankton physiology and the limitation of primary productivity or picophytoplankton biomass. Additions of N alone resulted in 1.5-2 fold increases in primary productivity and chlorophyll after 48 h, with larger (∼threefold) increases observed for the addition of P in combination with N (NP). Measurements of cellular chlorophyll contents permitted evaluation of the physiological response of the photosynthetic apparatus to N and P additions in three picophytoplankton groups. In both Prochlorococcus and the picoeukaryotes, cellular chlorophyll increased by similar amounts in N and NP treatments relative to all other treatments, suggesting that pigment synthesis was N limited. In contrast, the increase of cellular chlorophyll was greater in NP than in N treatments in Synechococcus, suggestive of NP co-limitation. Relative increases in cellular nucleic acid were also only observed in Synechococcus for NP treatments, indicating co-limitation of net nucleic acid synthesis. A lack of response to relief of nutrient stress for the efficiency of photosystem II photochemistry, Fv : Fm, suggests that the low nutrient supply to this region resulted in a condition of balanced nutrient limited growth, rather than starvation. N thus appears to be the proximal (i.e. direct physiological) limiting nutrient in the oligotrophic sub-tropical North Atlantic. In addition, some major picophytoplankton groups, as well as overall autotrophic community biomass, appears to be co-limited by N and P. © 2008, by the American Society of Limnology and Oceanography, Inc.