DARN/SuperDARN

International audience The Dual Auroral Radar Network (DARN) is a global-scale network of I-IF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere. Currently, the network consists of the STARE VHF radar system in northe...

Full description

Bibliographic Details
Published in:Space Science Reviews
Main Authors: Greenwald, R.A., Baker, K.B., Dudeney, J.R., Pinnock, M., Jones, T.B., Thomas, E.C., Villain, Jean-Paul, Cerisier, Jean-Claude, Senior, Catherine, Hanuise, C., Hunsucker, R.D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D. M., Sato, N., Yamagishi, H.
Other Authors: Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de sondages électromagnétiques de l'environnement terrestre (LSEET), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 1995
Subjects:
Online Access:https://insu.hal.science/insu-03191919
https://doi.org/10.1007/BF00751350
Description
Summary:International audience The Dual Auroral Radar Network (DARN) is a global-scale network of I-IF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere. Currently, the network consists of the STARE VHF radar system in northern Scandinavia, a northern-hemisphere, longitudinal chain of HF radars that is funded to extend from Saskatoon, Canada to central Finland, and a southern-hemisphere chain that is funded to include Halley Station, SANAE and Syowa Station in Antarctica. When all of the HF radars have been completed they will operate in pairs with common viewing areas so that the Doppler information contained in the backscattered signals may be combined to yield maps of high-latitude plasma convection and the convection electric field. In this paper, the evolution of DARN and particularly the development of its SuperDARN HF radar element is discussed. The DARN/SuperDARN network is particularly suited to studies of large-scale dynamical processes in the magnetosphere-ionosphere system, such as the evolution of the global configuration of the convection electric field under changing IMF conditions and the development and global extent of large-scale Mi-ID waves in the magnetosphere-ionosphere cavity. A description of the HF radars within SuperDARN is given along with an overview of their existing and intended locations, intended start of operations, Principal Investigators, and sponsoring agencies. Finally, the operation of the DARN experiment within ISTP/GGS, the availability of data, and the form and availability of the Key Parameter files is discussed.