The new Kr-86 excess ice core proxy for synoptic activity: West Antarctic storminess possibly linked to Intertropical Convergence Zone (ITCZ) movement through the last deglaciation

International audience Abstract. Here we present a newly developed ice core gas-phase proxy that directly samples a component of the large-scale atmospheric circulation: synoptic-scale pressure variability. Surface pressure changes weakly disrupt gravitational isotopic settling in the firn layer, wh...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Buizert, Christo, Shackleton, Sarah, Severinghaus, Jeffrey, P, Roberts, William, H G, Seltzer, Alan, Bereiter, Bernhard, Kawamura, Kenji, Baggenstos, Daniel, Orsi, Anaïs, J, Oyabu, Ikumi, Birner, Benjamin, Morgan, Jacob, D, Brook, Edward, J, Etheridge, David, M, Thornton, David, Bertler, Nancy, Pyne, Rebecca, L, Mulvaney, Robert, Mosley-Thompson, Ellen, Neff, Peter, D, Petrenko, Vasilii, V
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04086751
https://hal.science/hal-04086751/document
https://hal.science/hal-04086751/file/cp-19-579-2023.pdf
https://doi.org/10.5194/cp-19-579-2023
Description
Summary:International audience Abstract. Here we present a newly developed ice core gas-phase proxy that directly samples a component of the large-scale atmospheric circulation: synoptic-scale pressure variability. Surface pressure changes weakly disrupt gravitational isotopic settling in the firn layer, which is recorded in krypton-86 excess (86Krxs). The 86Krxs may therefore reflect the time-averaged synoptic pressure variability over several years (site “storminess”), but it likely cannot record individual synoptic events as ice core gas samples typically average over several years. We validate 86Krxs using late Holocene ice samples from 11 Antarctic ice cores and 1 Greenland ice core that collectively represent a wide range of surface pressure variability in the modern climate. We find a strong spatial correlation (r=-0.94, p<0.01) between site average 86Krxs and time-averaged synoptic variability from reanalysis data. The main uncertainties in the analysis are the corrections for gas loss and thermal fractionation and the relatively large scatter in the data. Limited scientific understanding of the firn physics and potential biases of 86Krxs require caution in interpreting this proxy at present. We show that Antarctic 86Krxs appears to be linked to the position of the Southern Hemisphere eddy-driven subpolar jet (SPJ), with a southern position enhancing pressure variability. We present a 86Krxs record covering the last 24 kyr from the West Antarctic Ice Sheet (WAIS) Divide ice core. Based on the empirical spatial correlation of synoptic activity and 86Krxs at various Antarctic sites, we interpret this record to show that West Antarctic synoptic activity is slightly below modern levels during the Last Glacial Maximum (LGM), increases during the Heinrich Stadial 1 and Younger Dryas North Atlantic cold periods, weakens abruptly at the Holocene onset, remains low during the early and mid-Holocene, and gradually increases to its modern value. The WAIS Divide 86Krxs record resembles records of monsoon intensity ...