Land-atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models -Part 1: Evaluation of the snow-albedo effect

International audience Abstract. Seasonal snow cover plays a major role in the climate system of the Northern Hemisphere via its effect on land surface albedo and fluxes. In climate models the parameterization of interactions between snow and atmosphere remains a source of uncertainty and biases in...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Daloz, Anne, Sophie, Schwingshackl, Clemens, Mooney, Priscilla, Strada, Susanna, Rechid, Diana, Davin, Edouard, L, Katragkou, Eleni, de Noblet-Ducoudré, Nathalie, Belda, Michal, Halenka, Tomas, Breil, Marcus, Cardoso, Rita, M, Hoffmann, Peter, Lima, Daniela, C A, Meier, Ronny, Soares, Pedro, M M, Sofiadis, Giannis, Strandberg, Gustav, Toelle, Merja, H, Lund, Marianne, T
Other Authors: Center for International Climate and Environmental Research Oslo (CICERO), University of Oslo (UiO), Norwegian Research Center (NORCE), Abdus Salam International Centre for Theoretical Physics Trieste (ICTP), Climate Service Center Hambourg (GERICS), Helmholtz-Zentrum Geesthacht (GKSS), Oeschger Centre for Climate Change Research (OCCR), Universität Bern / University of Bern (UNIBE), Aristotle University of Thessaloniki, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Univerzita Karlova Praha, Česká republika = Charles University Prague, Czech Republic (UK), Karlsruhe Institute of Technology (KIT), Instituto Dom Luiz, Universidade de Lisboa = University of Lisbon (ULISBOA), Swedish Meteorological and Hydrological Institute (SMHI), Center for Environmental Systems Research Kassel (CESR), Universität Kassel Kassel
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03702851
https://hal.science/hal-03702851/document
https://hal.science/hal-03702851/file/tc-16-2403-2022.pdf
https://doi.org/10.5194/tc-16-2403-2022
Description
Summary:International audience Abstract. Seasonal snow cover plays a major role in the climate system of the Northern Hemisphere via its effect on land surface albedo and fluxes. In climate models the parameterization of interactions between snow and atmosphere remains a source of uncertainty and biases in the representation of local and global climate. Here, we evaluate the ability of an ensemble of regional climate models (RCMs) coupled with different land surface models to simulate snow–atmosphere interactions over Europe in winter and spring. We use a previously defined index, the snow-albedo sensitivity index (SASI), to quantify the radiative forcing associated with snow cover anomalies. By comparing RCM-derived SASI values with SASI calculated from reanalyses and satellite retrievals, we show that an accurate simulation of snow cover is essential for correctly reproducing the observed forcing over middle and high latitudes in Europe. The choice of parameterizations, and primarily the choice of the land surface model, strongly influences the representation of SASI as it affects the ability of climate models to simulate snow cover accurately. The degree of agreement between the datasets differs between the accumulation and ablation periods, with the latter one presenting the greatest challenge for the RCMs. Given the dominant role of land surface processes in the simulation of snow cover during the ablation period, the results suggest that, during this time period, the choice of the land surface model is more critical for the representation of SASI than the atmospheric model.