Stochastic ensemble climate forecast with an analogue model

International audience This paper presents a system to perform large-ensemble climate stochastic forecasts. The system is based on random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast a North Atlantic Oscillation (NAO) index and the daily average tem...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Yiou, Pascal, Déandreis, Céline
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS), ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02902932
https://hal.science/hal-02902932/document
https://hal.science/hal-02902932/file/gmd-12-723-2019.pdf
https://doi.org/10.5194/gmd-12-723-2019
Description
Summary:International audience This paper presents a system to perform large-ensemble climate stochastic forecasts. The system is based on random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast a North Atlantic Oscillation (NAO) index and the daily average temperature in five European stations. We simulated 100-member ensembles of averages over lead times from 5 days to 80 days in a hindcast mode, i.e., from a meteorological to a seasonal forecast. We tested the hindcast simulations with the usual forecast skill scores (CRPS or correlation) against persistence and climatology. We find significantly positive skill scores for all timescales. Although this model cannot out-perform numerical weather prediction, it presents an interesting benchmark that could complement climatology or persistence forecast.