The role of phytoplankton dynamics in the seasonal and interannual variability of carbon in the subpolar North Atlantic – A modeling study

International audience We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the mo...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Signorini, Sergio, Hakkinen, S., Gudmunsson, K., Olsen, Are, Omar, Abdirahman M., Olafsson, Jon, Reverdin, Gilles, Henson, S.-A., Mcclain, C.R., Worthen, D.L.
Other Authors: Science Applications International Corporation (SAIC), GSFC Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center (GSFC), Marine Research Institute, Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences Bergen (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), National Oceanography Centre Southampton (NOC), University of Southampton
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-01239549
https://hal.science/hal-01239549/document
https://hal.science/hal-01239549/file/gmd-5-683-2012.pdf
https://doi.org/10.5194/gmd-5-683-2012
Description
Summary:International audience We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO 2 , air-sea CO 2 flux, and nutrients) are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO 2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO 2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 µmol kg −1 with a corresponding increase in DIC of up to 16 µmol kg −1 . During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO 2 of more than 20 µatm and a reduction of atmospheric CO 2 uptake of more than 6 mmol m −2 d −1 . On average, the impact of coccolithophores is an increase of air-sea CO 2 flux of about 27 %. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500 tonnes C yr −1 .