Endangered right whales enhance primary productivity in the bay of fundy

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Marine mammals have recently been documented as important facili...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Roman, Joe, Nevins, John, Altabet, Mark, Koopman, Heather, McCarthy, James
Format: Text
Language:unknown
Published: UVM ScholarWorks 2016
Subjects:
Online Access:https://scholarworks.uvm.edu/rsfac/132
https://doi.org/10.1371/journal.pone.0156553
https://scholarworks.uvm.edu/context/rsfac/article/1132/viewcontent/Roman2016a.pdf
Description
Summary:This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4 + and PO4 3- release rates from the feces of North Atlantic right whales (Eubalaena glacialis), a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface- Active groups (SAGs), which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4 + within 24 hours of defecation. Phosphorous was also abundant in fecal samples: Initial release rates of PO4 3- were higher than for NH4 +, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO4 3- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4 + released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals), they once numbered about 14,000 and likely played a ...