Dissolved Rare Earth Elements in the central-western sector of the Ross Sea, Southern Ocean: geochemical tracing of seawater masses

The present essay contributes to the existing literature on rare earth elements (REEs) in the southern hemisphere by presenting the first data, to our knowledge, on the vertical profiles of dissolved REEs in 71 samples collected in the central-western sector of the Ross Sea (Southern Ocean-SO). The...

Full description

Bibliographic Details
Published in:Chemosphere
Main Authors: TURETTA, Clara, BARBARO, ELENA, CAPODAGLIO, Gabriele, BARBANTE, Carlo
Other Authors: Turetta, Clara, Barbaro, Elena, Capodaglio, Gabriele, Barbante, Carlo
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10278/3687693
https://doi.org/10.1016/j.chemosphere.2017.05.142
Description
Summary:The present essay contributes to the existing literature on rare earth elements (REEs) in the southern hemisphere by presenting the first data, to our knowledge, on the vertical profiles of dissolved REEs in 71 samples collected in the central-western sector of the Ross Sea (Southern Ocean-SO). The REEs were measured in the water samples collected during the 2002-2003 and 2005-2006 austral summers. 4 samples were collected and analysed in the framework of a test experiment, as part of the WISSARD Project (Whillans Ice Stream Subglacial Access Research Drilling). Our results show significant differences between the REE patterns of the main water masses present in the SO: we could observe specific signature in the High Salinity Shelf Water (HSSW), Ice Shelf Water (ISW) and Low Salinity Shelf Water (LSSW). A significant increase in Terbium (Tb) concentration was observed in the HSSW and ISW, the two principal water masses contributing to the formation of Antarctic Bottom Water (AABW) in the Ross Sea area, and in LSSW. Some of the HSSW samples show enrichment in Neodymium (Nd). Dissolved REE could therefore be used as tracers to understand the deep circulation of the SO (Pacific sector).We hypothesise that: (I) the characteristic dissolved REE pattern may derive from the composition of source area and from the hydrothermal activity of the central-western area of the Ross Sea; (II) the Tb anomaly observed in the AABW on the South Australian platform could be partially explained by the contribution of AABW generated in the Ross Sea region.