Dynamic buckling of a base-excited thin cylindrical shell carrying a top mass

This paper considers dynamic buckling of a harmonically base-excited vertical cylindrical shell carrying a top mass. Based on Donnell's nonlinear shell theory, a semi-analytical model is derived which exactly satisfies the (in-plane) boundary conditions. This model is numerically validated thro...

Full description

Bibliographic Details
Main Authors: Mallon, N.J., Fey, R.H.B., Nijmeijer, H.
Format: Other Non-Article Part of Journal/Newspaper
Language:English
Published: 2007
Subjects:
Online Access:https://research.tue.nl/en/publications/550a68c4-e7d7-40ef-81e2-bcb5662c4365
Description
Summary:This paper considers dynamic buckling of a harmonically base-excited vertical cylindrical shell carrying a top mass. Based on Donnell's nonlinear shell theory, a semi-analytical model is derived which exactly satisfies the (in-plane) boundary conditions. This model is numerically validated through a comparison with quasi-static and modal analysis results obtained using finite element modelling. The steady-state nonlinear dynamics of the base-excited cylindrical shell with top mass are examined using both numerical continuation of periodic solutions and standard numerical time integration. In these dynamic analyses the cylindrical shell is preloaded by the weight of the top mass. This preloading results in a single unbuckled stable static equilibrium state. A critical value for the amplitude of the harmonic base-excitation is determined. Above this critical value, the shell exhibits an instationary beating type ofresponse with time intervals showing severe out-of-plane deformations (it buckles dynamically). Similar as for the static buckling case, the critical value highly depends on the initial imperfections present in the shell.