Development and application of genomic tools to the genetic improvement of Atlantic salmon and Chilean mussels

Aquaculture is the fastest growing animal food producing sector in the world, providing almost half of the fish consumed worldwide. However, to meet the future large-scale protein demand associated with world population growth, a sustainable increase in production is required. Genetics and genomics...

Full description

Bibliographic Details
Main Authors: Penaloza, Carolina Soledad, Peñaloza Navarro, Carolina Soledad
Other Authors: Bishop, Stephen, Houston, Ross
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2014
Subjects:
Online Access:http://hdl.handle.net/1842/9775
Description
Summary:Aquaculture is the fastest growing animal food producing sector in the world, providing almost half of the fish consumed worldwide. However, to meet the future large-scale protein demand associated with world population growth, a sustainable increase in production is required. Genetics and genomics techniques have immense potential for enhancing aquaculture production through selective breeding programs, including the incorporation of marker-assisted selection (MAS). These advances are dependent on applying knowledge of the genetic basis of traits of economic importance (i.e. their heritability and genetic architecture) and the availability of genomic resources, particularly DNA markers, genome linkage maps and genotyping techniques. The overall aim of this Master of Philosophy thesis is to investigate the genetic basis of traits of importance to aquaculture, and to develop and characterise genetic markers for potential use in selective breeding. This will be targeted at two aquacultural species of economic importance: the Atlantic salmon (Salmo salar) and the Chilean mussel (Mytilus chilensis). Since these species are at a very different stage of development of genomic research, with salmon selective breeding and genomics more advanced, species-specific aims were proposed as follows: 1. Atlantic salmon: The objective of this study was to assess the possibility of using gene-specific markers in selective breeding programs by discovering new single-nucleotide polymorphisms (SNPs) in a gene known to regulate growth in mammals and perform a large-scale SNP association study. Novel SNP markers were identified on a gene paralogue (myostatin-1b) that negatively regulates skeletal muscle development and growth. The SNPs were tested for association with growth and fillet related traits measured in a commercial population of 4,800 Atlantic salmon at harvest. 2. Chilean mussel: The overall aim was to assess the possibility of selective breeding for growth-related traits by assessing their heritability, and by discovering ...