Gravitational lensing analysis of galaxy clusters in the Southern Cosmology Survey

In this thesis I present the first gravitational lensing results from the Southern Cosmology Survey (SCS). I provide a preliminary study of an automated pipeline analysis of a large survey, in preparation for larger surveys. Future large-area sky surveys, such as Pan-STARRS-1 (PS1), have similar cha...

Full description

Bibliographic Details
Main Author: McInnes, Rachel Natalie
Other Authors: Heavens, Alan, Taylor, Andy, Massey, Richard
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2010
Subjects:
Online Access:http://hdl.handle.net/1842/4729
Description
Summary:In this thesis I present the first gravitational lensing results from the Southern Cosmology Survey (SCS). I provide a preliminary study of an automated pipeline analysis of a large survey, in preparation for larger surveys. Future large-area sky surveys, such as Pan-STARRS-1 (PS1), have similar characteristics to the SCS data and will require full automation of the processing. Therefore, this data set provides an ideal test case to highlight the problems which will be faced by such surveys. To analyse the large SCS dataset, I develop an automated weak lensing pipeline based on the KSB. This pipeline has been rigorously verified using simulations and data which I detail here. Results are shown from a weak lensing analysis of 152 optically-selected clusters in 56 square degrees. I fit universal Navarro, Frenk and White (NFW) profiles to measure cluster masses, and use the relatively large area of the survey to test the universal shape of cluster profiles using stacking of the tangential shears. I present the first lensing mass measurements of Sunyaev-Zel’dovich (SZ) selected clusters. It has been long thought that SZ surveys would be a powerful way to detect galaxy clusters for cosmological studies. Simulations show that the SZ detection is independent of redshift and that the threshold corresponds very closely to a threshold in mass. It was, however, not guaranteed that the first blind SZ experiments would detect mass. Using optical imaging from the SCS, I present lensing masses for three clusters selected by their SZ emission in the South Pole Telescope survey (SPT). I confirm that the SZ selection procedure is successful in detecting mass concentrations and find that the SZ clusters have amongst the largest masses, as high as 15x1014M . Consequently I can confirm that the first installment of SZ detections has detected large mass concentrations. Using the best fit masses for all the clusters, I analytically calculate the expected SZ integrated Y parameter. Finally, the scaling relation of Reyes et al. (2008) ...