Nature and dynamics of ice-stream beds: assessing their role in ice-sheet stability

Ice streams are fast flowing outlet glaciers through which over 90% of the ice stored within the Antarctic Ice Sheet drains. The dynamic behaviour of ice streams is therefore crucial in controlling the mass balance of the ice sheet. Over the past few decades, Antarctica has been losing mass. Much of...

Full description

Bibliographic Details
Published in:Nature Communications
Main Author: Davies, Damon
Other Authors: Bingham, Robert, Hulton, Nick, Natural Environment Research Council (NERC)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2018
Subjects:
Online Access:http://hdl.handle.net/1842/31399
Description
Summary:Ice streams are fast flowing outlet glaciers through which over 90% of the ice stored within the Antarctic Ice Sheet drains. The dynamic behaviour of ice streams is therefore crucial in controlling the mass balance of the ice sheet. Over the past few decades, Antarctica has been losing mass. Much of this mass loss has been focussed around coastal regions of the Antarctic Ice Sheet. Some of the most dramatic changes such as grounding-line retreat, acceleration and surface elevation change have been observed in Pine Island Glacier (PIG) and its neighbouring ice streams. This is of particular concern because these ice streams account for 10% of the discharge from the west Antarctic Ice Sheet and therefore have the potential to contribute significantly to global sea-level rise. One of the key challenges in accurately forecasting this future sea-level rise is improving understanding of processes occurring at the beds of ice streams. This requires detailed knowledge of the properties and dynamics of the bed. This thesis aims to address this knowledge gap by investigating the spatial and temporal characteristics of the bed of PIG using high-resolution geophysical data acquired in its trunk and tributaries and beneath the ice shelf. The thesis begins by analysing radar-derived high-resolution maps of subglacial topography. These data show a contrasting topography across the ice-bed interface. These diverse subglacial landscapes have an impact on ice flow through form drag, controlled by the size and orientation of bedrock undulations and protuberances. The next chapter provides a quantitative analysis of these landscapes using Fast Fourier analysis of subglacial roughness. This analysis investigates the roughness signature of subglacial bedforms and the how the orientation and wavelength of roughness elements determine their correlation with ice dynamic parameters. The slow-flowing inter-tributary site is found to have a distinct signature comparable to “ribbed” patterns of modelled basal shear stress and transverse ...