Linking mid-latitude storms, atmospheric composition and climate variability

In this thesis, the role of mid-latitude cyclones in air pollution transport in the Northern Hemisphere is quantified. The storm tracking model, TRACK, is used to study the mechanisms through which pollution, specifically ozone (O3) and carbon monoxide (CO), are vented from the boundary layer to the...

Full description

Bibliographic Details
Main Author: Knowland, Katherine Emma
Other Authors: Doherty, Ruth, Hodges, Kevin, other
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2016
Subjects:
Online Access:http://hdl.handle.net/1842/15975
Description
Summary:In this thesis, the role of mid-latitude cyclones in air pollution transport in the Northern Hemisphere is quantified. The storm tracking model, TRACK, is used to study the mechanisms through which pollution, specifically ozone (O3) and carbon monoxide (CO), are vented from the boundary layer to the free troposphere and thus transported over large distances, as well as the introduction of O3 from the stratosphere into the troposphere. The relationship between mid-latitude cyclones and air pollution transport of O3 and CO is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis, a combined meteorology and composition reanalysis dataset. A comparison between springtime surface ozone measurements at rural background sites on the west coast of Europe and cyclone track frequency in the surrounding regions was used to first establish the correlation between cyclone location and surface air quality. The focus is on spring as it tends to be the season of maximum intercontinental transport of O3. The surface observations were compared to the MACC O3 values at the same locations and case studies of how cyclones can influence surface O3 measurements are described. When cyclones track north of 53°N, there is a significant probability that the surface O3 will be high (> the 75th percentile), due to the close proximity to stratospheric intrusions and the transport at low levels across the North Atlantic Ocean. The most intense spring cyclones (95th percentile) were selected for two regions, the North Atlantic and the North Pacific, for further investigation into the mechanisms which impact O3 and CO concentrations near cyclones. These intense cyclones ( 60 over each region) often tracked over the major emission sources of eastern North America and East Asia. The distributions of MACC O3 and CO within a "typical" intense cyclone are examined by compositing the cyclones together. The cyclone-centered composites were compared to background composites of "average conditions" ...