Constraining bedrock erosion during extreme flood events

The importance of high-magnitude, short-lived flood events in controlling the evolution of bedrock landscapes is not well understood. During such events, erosion processes can shift from one regime to another upon the passing of thresholds, resulting in abrupt landscape changes that can have a long...

Full description

Bibliographic Details
Published in:Geomorphology
Main Author: Baynes, Edwin Richard Crews
Other Authors: Attal, Mikael, Kirstein, Linda, Dugmore, Andrew, Natural Environment Research Council (NERC)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2016
Subjects:
Online Access:http://hdl.handle.net/1842/15962
Description
Summary:The importance of high-magnitude, short-lived flood events in controlling the evolution of bedrock landscapes is not well understood. During such events, erosion processes can shift from one regime to another upon the passing of thresholds, resulting in abrupt landscape changes that can have a long lasting legacy on landscape morphology. Geomorphological mapping and topographic analysis document the evidence for, and impact of, extreme flood events within the Jökulsárgljúfur canyon (North-East Iceland). Surface exposure dating using cosmogenic 3He of fluvially sculpted bedrock surfaces determines the timing of the floods that eroded the canyon and helps constrain the mechanisms of bedrock erosion during these events. Once a threshold flow depth has been exceeded, the dominant erosion mechanism becomes the toppling and transportation of basalt lava columns and erosion occurs through the upstream migration of knickpoints. Surface exposure ages allow identification of three periods of rapid canyon cutting during erosive flood events about 9, 5 and 2 ka ago, when multiple active knickpoints retreated large distances (> 2 km), each leading to catastrophic landscape change within the canyon. A single flood event ~9 ka ago formed, and then abandoned, Ásbyrgi canyon, eroding 0.14 km3 of rock. Flood events ~5 and ~2 ka ago eroded the upper 5 km of the Jökulsárgljúfur canyon through the upstream migration of vertical knickpoints such as Selfoss, Dettifoss and Hafragilsfoss. Despite sustained high discharge of sediment-rich glacial meltwater (ranging from 100 to 500 m3 s-1); there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive flood: the vertical knickpoints have not diffused over time and there is no evidence of incision into the canyon floor. The erosive signature of the extreme events is maintained in this landscape due to the nature of the bedrock, the discharge of the river, large knickpoints and associated plunge pools. The influence of these controls on the dynamics ...