Nitrogen and carbon cycling in the South Atlantic Ocean: A stable isotope study along a 40°S transect (UK GEOTRACES)

Fixed N (nitrate, nitrite, and ammonium) is a limiting nutrient for photosynthesis in the surface ocean. The rates and relative importance of N cycling processes, however, are temporally and spatially complex, which hamper their direct measurement and quantification. The South Atlantic subtropical f...

Full description

Bibliographic Details
Main Author: Tuerena, Robyn Elizabeth
Other Authors: Ganeshram, Raja, Geibert, Walter, Natural Environment Research Council (NERC)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Edinburgh 2015
Subjects:
Online Access:http://hdl.handle.net/1842/10443
Description
Summary:Fixed N (nitrate, nitrite, and ammonium) is a limiting nutrient for photosynthesis in the surface ocean. The rates and relative importance of N cycling processes, however, are temporally and spatially complex, which hamper their direct measurement and quantification. The South Atlantic subtropical front separates the Atlantic Ocean and the subantarctic, an area which can elucidate information about water masses both entering and leaving the basin. Through the GEOTRACES programme, an oceanographic section across 40°S in the South Atlantic is used to investigate biogeochemical cycling of nitrogen and carbon in this region. Hydrographic data, in combination with the isotopic composition of nitrate (NO3-), particulate organic carbon and particulate nitrogen (δ15NNO3, δ18ONO3, δ13CPOC, δ15NPN), is used to provide integrative measurements for temporally and spatially variable processes of the marine N-cycle and C-cycle. A thorough examination of the stable isotope cycling of particulate and dissolved N across the subtropical front is used to quantify the supply of fixed N to the mixed layer. The relative importance of nitrate from the subsurface, N2 fixation, terrestrial input and atmospheric deposition in supplying production is determined. Typically, 30-50% of the export flux in the subtropical water masses is sourced from N2 fixers and up to 75% within the Brazil Current. This finding suggests that diazotrophs may be abundant in the South West Atlantic providing a source of new N to this region. To assess the basin scale N-cycling processes, the deep water masses were analysed to reveal the origin and history of NO3-. Intermediate waters formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilisation by algae. This enrichment in δ15NNO3 is not present in the subtropical North Atlantic or the return flow of the North Atlantic Deep Water (NADW), which decreases from ~5.9‰ in the newly formed intermediate waters to ~4.8‰ in the NADW at 40°S. The modification of isotopic signatures through the ...