Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years

The history of permafrost aggradation and thaw in northern peatlands can serve as an indicator of regional climatic history in regions where records are sparse. We infer regional trends in the timing of permafrost aggradation and thaw in North American and Eurasian peatland ecosystems based on plant...

Full description

Bibliographic Details
Published in:The Holocene
Main Authors: Treat, Claire C, Jones, Miriam C
Other Authors: Department of Environmental Science, activities
Format: Article in Journal/Newspaper
Language:English
Published: SAGE Publications 2018
Subjects:
bog
fen
Ice
Online Access:https://erepo.uef.fi/handle/123456789/5813
Description
Summary:The history of permafrost aggradation and thaw in northern peatlands can serve as an indicator of regional climatic history in regions where records are sparse. We infer regional trends in the timing of permafrost aggradation and thaw in North American and Eurasian peatland ecosystems based on plant macrofossils and peat properties using existing peat core records from more than 250 cores. Results indicate that permafrost was continuously present in peatlands during the last 6000 years in some present-day continuous permafrost zones and formed after 6000 BP in peatlands in the isolated to discontinuous permafrost regions. Rates of permafrost aggradation in peatlands generally increased after 3000 BP and were greatest between 750 and 0 BP, corresponding with neoglacial cooling and the Little Ice Age (LIA), respectively. Peak periods of permafrost thaw occurred after 250 BP, when permafrost aggradation in peatlands reached its maximum extent and as temperatures began warming after the LIA, suggesting that permafrost thaw is likely to continue in the future. The broader correlation of permafrost aggradation in peatlands with known climatic trends and other proxies such as pollen records suggests that this record can be a valuable addition to regional climate reconstructions. final draft peerReviewed