A satellite altimetry data assimilation approach to optimise sea state estimates from vessel motion

Estimates of directional wave spectra and related parameters can be obtained from ship motion data through the wave-buoy analogy approach. The fundamental input is the response amplitude operator (RAO), which translates ship response into a wave energy spectrum. While ship motion is routinely measur...

Full description

Bibliographic Details
Published in:Applied Ocean Research
Main Authors: Nelli, Filippo, Derkani, Marzieh H., Alberello, Alberto, Toffoli, Alessandro
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://ueaeprints.uea.ac.uk/id/eprint/90961/
https://ueaeprints.uea.ac.uk/id/eprint/90961/1/apor.pdf
https://doi.org/10.1016/j.apor.2023.103479
Description
Summary:Estimates of directional wave spectra and related parameters can be obtained from ship motion data through the wave-buoy analogy approach. The fundamental input is the response amplitude operator (RAO), which translates ship response into a wave energy spectrum. While ship motion is routinely measured on ocean going vessels, the RAO is not directly available and it is approximated using ship hydrodynamic models. The lack of publicly available details of hull geometry and loading conditions can results in significant inaccuracy of this operator. Considering the reliability of remotely sensed wave height, here we propose an assimilation technique that uses satellite altimeter observations to calibrate the RAO and minimise its uncertainties. The method is applied to estimate sea state conditions during the Antarctic Circumnavigation Expedition by converting motion response of the icebreaker Akademik Tryoshnikov as recorded by the on-board inertial measurement unit. Comparison against concurrent sea state observations obtained from a marine radar device shows a good agreement for a variety of parameters including significant wave height, wave periods and mean wave direction.