Spatial variation in growth, maturation schedules and reproductive investment of female sole Solea solea in the Northeast Atlantic

Latitudinal variation in life-history traits is often explained by phenotypically plastic responses or local adaptations to different thermal regimes. We compared growth, maturation schedules and reproductive investment of female sole Solea solea between 8 populations, covering much of the species&#...

Full description

Bibliographic Details
Published in:Journal of Sea Research
Main Authors: Mollet, Fabian M., Engelhard, Georg H., Vainikka, Anssi, Laugen, Ane T., Rijnsdorp, Adriaan D., Ernande, Bruno
Format: Article in Journal/Newspaper
Language:unknown
Published: 2013
Subjects:
Online Access:https://ueaeprints.uea.ac.uk/id/eprint/50809/
https://doi.org/10.1016/j.seares.2012.12.005
Description
Summary:Latitudinal variation in life-history traits is often explained by phenotypically plastic responses or local adaptations to different thermal regimes. We compared growth, maturation schedules and reproductive investment of female sole Solea solea between 8 populations, covering much of the species' distribution in northern Europe, with respect to thermal gradients. An energy allocation model was fitted to size-age data, and probabilistic maturation reaction norms were estimated from size-age-maturity data. We found that northern populations from colder environments had higher rates of energy acquisition and reproductive investment, an intrinsic tendency to mature earlier, and had smaller asymptotic sizes than southern populations from warmer environments. Consequently, growth rate was higher before maturation but lower after maturation in the north compared to the south. This is opposite to Bergmann's rule according to which slower growth, delayed maturation and larger asymptotic sizes are usually observed at lower temperatures. The observed patterns could indicate strong countergradient thermal adaptation for rapid growth and development as well as sustained fecundity in the north, or indicate a response to other selection pressures correlated with the thermal gradient. Potentially higher mortality in northern populations during cold winters might be one of the key drivers of the observed geographical variation in growth and maturation of sole.