HYDROGRAPHIC OBSERVATIONS OF OXYGEN AND RELATED PHYSICAL VARIABLES IN THE NORTH SEA AND WESTERN ROSSSEA POLYNYA investigations using seagliders, historical observations and numerical modelling
Shelf seas are one of the most ecologically and economically important ecosystems of the planet. Dissolved oxygen in particular is of critical importance to maintaining a healthy and stable biological community. This work investigates the physical, chemical and biological drivers of summer oxygen va...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://ueaeprints.uea.ac.uk/id/eprint/48678/ https://ueaeprints.uea.ac.uk/id/eprint/48678/1/BYQ_Thesis_printcopy.pdf |
Summary: | Shelf seas are one of the most ecologically and economically important ecosystems of the planet. Dissolved oxygen in particular is of critical importance to maintaining a healthy and stable biological community. This work investigates the physical, chemical and biological drivers of summer oxygen variability in the North Sea (Europe) and Ross Sea polynya (Antarctica). In particular, this work also focuses on the use of new autonomous underwater vehicles, Seagliders, for oceanographic observations of fine scale (a few metres) to basin-wide features (hundreds of kilometres). Two hydrographic surveys in 2010 and 2011 and an analysis of historical data dating back to 1902 revealed low dissolved oxygen in the bottom mixed layer of the central North Sea.We deployed a Seaglider in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. Historical data highlighted an increase in seasonal oxygen depletion and a warming over the past 20 years. Regions showing sub-saturation oxygen concentrations were identified in the central and northern North Sea post-1990 where previously no depletion was identified. Low dissolved oxygen was apparent in regions characterised by low advection, high stratification, elevated organic matter production from the spring bloom and a deep chlorophyll maximum. The constant consumption of oxygen for the remineralisation of the matter exported below the thermocline exceeded the supply from horizontal advection or vertical diffusion. The Seaglider identified cross-pycnocline mixing features responsible for reoxygenation of the bottom mixed layer not currently resolved by models of the North Sea. Using the data, we were also able to constrain the relative importance of different sources of organic matter leading to oxygen consumption. iii From November 2010 to February 2011, two Seagliders were deployed in the Ross polynya to observe the initiation and evolution of the spring bloom. Seagliders were a ... |
---|