Orbital and Suborbital‐Scale Variations of Productivity and Sea Surface Conditions in the Gulf of Alaska During the Past 54,000 Years: Impact of Iron Fertilization by Icebergs and Meltwater
As a high-nutrient and low-chlorophyll region, the modern Gulf of Alaska (GoA) is strongly impacted by the limitation of iron. Paleostudies along the Alaskan slope have mainly focused on reconstructing environmental conditions over the past 18 ka. Based on micropaleontological, biogeochemical, and s...
Published in: | Paleoceanography and Paleoclimatology |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley
2022
|
Subjects: | |
Online Access: | http://dro.dur.ac.uk/35514/ http://dro.dur.ac.uk/35514/1/35514.pdf https://doi.org/10.1029/2021PA004385 |
Summary: | As a high-nutrient and low-chlorophyll region, the modern Gulf of Alaska (GoA) is strongly impacted by the limitation of iron. Paleostudies along the Alaskan slope have mainly focused on reconstructing environmental conditions over the past 18 ka. Based on micropaleontological, biogeochemical, and sedimentological parameters, we explore a sediment record covering the past 54 ka at Integrated Ocean Drilling Program Site U1419 to understand the impact of orbital- and suborbital-scale climate variability on productivity and sea-surface conditions. Close to the Cordilleran Ice Sheet (CIS), Site U1419 is ideally located to elucidate how the evolution of a large ice mass and glacial processes affected orbital- and suborbital-scale changes in nutrients (e.g., iron) supply. Meltwater discharge from the northern CIS impacted sea surface dynamics of GoA coastal waters. The corresponding increases in bulk biogenic concentrations during Marine Isotope Stage (MIS) 3 and MIS 2 (54–17 ka) suggests a direct impact from iron fertilization. The lack of a consistent relationship between productivity and SST suggests that cooling of surface waters was not the dominant control on primary producers. The inundation of the subaerially exposed continental shelf during the last deglacial (17–10 ka) warming could have served as a major micronutrient source, accounting for a deglacial peak in production. Low productivity after the last deglaciation suggests reduced iron availability, which we link to reduced meltwater inputs from smaller ice masses onshore. Our multiproxy approach reveals a more comprehensive picture of late Quaternary productivity variations compared to earlier studies along the Alaskan margin. The impact of tidewater glaciers and meltwater discharge on past marine productivity and nutrient budget dynamics of high-latitude coastal regions is discussed. |
---|