Depositional influences on Re-Os systematics of Late Cretaceous–Eocene fluvio-deltaic coals and coaly mudstones, Taranaki Basin, New Zealand

The factors controlling Re-Os systematics and potential for geochronology in organic-rich sedimentary rocks deposited in fully terrestrial to paralic environments are not well understood. Here we present Re-Os, bulk pyrolysis and sulfur data for coals and coaly mudstones from the Late Cretaceous Rak...

Full description

Bibliographic Details
Published in:International Journal of Coal Geology
Main Authors: Rotich, Enock K., Handler, Monica R., Sykes, Richard, Selby, David, Naeher, Sebastian
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2021
Subjects:
Online Access:http://dro.dur.ac.uk/32945/
http://dro.dur.ac.uk/32945/1/32945.pdf
https://doi.org/10.1016/j.coal.2020.103670
Description
Summary:The factors controlling Re-Os systematics and potential for geochronology in organic-rich sedimentary rocks deposited in fully terrestrial to paralic environments are not well understood. Here we present Re-Os, bulk pyrolysis and sulfur data for coals and coaly mudstones from the Late Cretaceous Rakopi and North Cape, Paleocene Farewell and Eocene Mangahewa formations, Taranaki Basin, New Zealand, to investigate a range of depositional controls on the behaviour of Re and Os in coaly rocks. These rocks were deposited in various fluvial, estuarine and coastal plain environments, and exhibit varying degrees of marine influence, as indicated by total sulfur content, presence of dinoflagellate cysts, and other parameters. The Taranaki coaly rocks have low Re (0.1–1.3 ppb) and Os (14.2–66.2 ppt) concentrations, even for strongly marine-influenced, high‑sulfur samples. These low concentrations are similar to those reported for entirely terrestrial coals, but are up to two orders of magnitude lower than in marine-influenced coals from the Carboniferous Matewan coal seam, USA. Unlike the Taranaki coaly rocks and other coals analysed for Re and Os, the Matewan coal seam is directly overlain by a fully marine shale. This suggests that such juxtaposition of depositional environments may be required for enhanced Re and Os enrichment in coals, for example, through drowning of the precursor peat mires by Re- and Os-rich seawater during the deposition of the overlying marine shale. The initial 187Os/188Os (Osi) compositions of the Taranaki coaly rocks show significant variation. Samples from the Rakopi Formation exhibit radiogenic Osi values (0.8–1.2), which is expected for coals deposited in fully terrestrial settings and which source Os from weathering of surrounding upper continental crust. In contrast, samples from the progressively younger North Cape, Farewell and Mangahewa formations exhibit significantly less radiogenic Osi values (0.3–0.5). We attribute this to variable levels of marine influence from moderately ...