The latest Aptian / earliest Albian age of the Kekura gold deposit, Western Chukotka, Russia : implications for mineralization associated with post-collisional magmatism.

The Kekura gold deposit (76.2 t Au at 8.1 g/t) is situated in Western Chukotka, a region that hosts several Au, Ag, Cu, and Mo deposits and prospects. The Kekura deposit is related to the eponymous granite intrusion that is cut by porphyry dikes. The U-Pb zircon age of one of these dikes is 112 ± 1...

Full description

Bibliographic Details
Published in:Mineralium Deposita
Main Authors: Nagornaya, E.V., Baksheev, I.A., Selby, D., Tikhomirov, P.L.
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer 2020
Subjects:
Online Access:http://dro.dur.ac.uk/30370/
http://dro.dur.ac.uk/30370/1/30370.pdf
https://doi.org/10.1007/s00126-020-00969-7
Description
Summary:The Kekura gold deposit (76.2 t Au at 8.1 g/t) is situated in Western Chukotka, a region that hosts several Au, Ag, Cu, and Mo deposits and prospects. The Kekura deposit is related to the eponymous granite intrusion that is cut by porphyry dikes. The U-Pb zircon age of one of these dikes is 112 ± 1 Ma (2σ) that corresponds to the latest Aptian/earliest Albian. Both intrusion and dikes are hydrothermally altered and are cut by gold-quartz and molybdenite-quartz veins and stringers. Two molybdenite samples yield Re-Os model ages of 112.5 ± 0.6 and 112.3 ± 0.6 Ma (2σ). These Re-Os ages indicate the close temporal relationship between the molybdenite mineralization and the porphyry dikes. The age of the Kekura mineral system is similar to that of the post-collisional granitic plutons of the Anyui zone spatially scattered, between 140 and 210 km northwest of Kekura. We suggest that this temporal relationship may increase the likelihood of further discoveries of economic gold mineralization related to the currently underexplored Aptian post-collisional magmatic complexes of the Western Chukotka area.