The glacial geomorphology of the Antarctic ice sheet bed.

In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Jamieson, S.S.R., Stokes, C.R., Ross, N., Rippin, D.M., Bingham, R.G., Wilson, D.S., Margold, M., Bentley, M.J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2014
Subjects:
Online Access:http://dro.dur.ac.uk/12078/
http://dro.dur.ac.uk/12078/1/12078.pdf
http://dro.dur.ac.uk/12078/2/12078.pdf
https://doi.org/10.1017/S0954102014000212
Description
Summary:In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.