Relative sea-level response to Little Ice Age ice mass change in south central Alaska : reconciling model predictions and geological evidence.

Integration of geological data and glacio-isostatic adjustment (GIA) modelling shows that it is possible to decouple complex mechanisms of relative sea-level (RSL) change in a tectonically active glacial environment. We model a simplest solution in which RSL changes in upper Cook Inlet, Alaska, are...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Barlow, N.L.M., Shennan, I., Long, A.J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2012
Subjects:
Online Access:http://dro.dur.ac.uk/10600/
http://dro.dur.ac.uk/10600/1/10600.pdf
https://doi.org/10.1016/j.epsl.2011.09.048
Description
Summary:Integration of geological data and glacio-isostatic adjustment (GIA) modelling shows that it is possible to decouple complex mechanisms of relative sea-level (RSL) change in a tectonically active glacial environment. We model a simplest solution in which RSL changes in upper Cook Inlet, Alaska, are a combination of the interplay of tectonic and isostatic processes driven by the unique rheology of this tectonically active location. We calculate interseismic uplift during latter part of the penultimate earthquake cycle to vary from 0.3 to 0.7 mm/yr. Diatom based reconstructions of RSL from tidal marsh sediment sequences coupled with detailed age models, from AD 1400 to the AD 1964 great earthquake, show deviations from a purely tectonically driven model of regional RSL. Glacial isostatic modelling, constrained by GPS data, predicts up to 70 cm sea-level change due to mountain glacier mass balance changes during the Little Ice Age. Misfits between the GIA model predictions and RSL reconstructions in the 19th and 20th century highlight that the tidal marshes of upper Cook Inlet potentially record a hemispheric-wide acceleration in sea level and that other more complex Earth process combinations may contribute to regional RSL change.