Summary: | This article was originally published in Journal of Applied Meteorology and Climatology. The version of record is available at: https://doi.org/10.1175/JAMC-D-21-0077.1. © Copyright 2022 American Meteorological Society (AMS). For permission to reuse any portion of this Work, please contact permissions@ametsoc.org. Any use of material in this Work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy). Coastal flooding is one of the most costly and deadly natural hazards facing the U.S. mid-Atlantic region today. Impacts in this heavily populated and economically significant region are caused by a combination of the location’s exposure and natural forcing from storms and sea level rise. Tropical cyclones (TCs) and midlatitude (ML) weather systems each have caused extreme coastal flooding in the region. Skew surge was computed over each tidal cycle for the past 40 years (1980–2019) at several tide gauges in the Delaware and Chesapeake Bays to compare the meteorological component of surge for each weather type. Although TCs cause higher mean surges, ML weather systems can produce surges just as severe and occur much more frequently, peaking in the cold season (November–March). Of the top 10 largest surge events, TCs account for 30%–45% in the Delaware and upper Chesapeake Bays and 40%–45% in the lower Chesapeake Bay. This ...
|