Digital mapping of techno-economic performance of a liquid-based solar photovoltaic/thermal (PVT) system over large geographical cities around the world

Photovoltaic thermal (PVT) collectors are widely used to harness a large fraction of the solar spectrum to generate electricity and heat from a single collector. The circulation of the working medium will pass through the collector which cools down the PV cell temperature and also increases the wate...

Full description

Bibliographic Details
Main Author: Penaka, Santhan Reddy
Format: Bachelor Thesis
Language:English
Published: Högskolan Dalarna, Energiteknik 2020
Subjects:
PVT
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:du-34513
Description
Summary:Photovoltaic thermal (PVT) collectors are widely used to harness a large fraction of the solar spectrum to generate electricity and heat from a single collector. The circulation of the working medium will pass through the collector which cools down the PV cell temperature and also increases the water temperature, which will increase the electrical and thermal performance at the same time. PVT is an emerging technology and is demonstrated for domestic and industrial applications. There has also been a major gap for the techno-economic analysis of PVT system in different climatic conditions and further developing reliable financial models that can be applied in different regions. This thesis paper presents a techno-economic evaluation of a liquid-based PVT collector system developed by Abora Solar, Spain across a wide range of climatic conditions and contexts. The various performance indicators are visualized by digital mapping approach for 86 different locations all over the world. The databank obtained from the analysis is further used to establish a general correlation between collector performance and meteorological parameters such as Global horizontal irradiation and ambient temperature. The collector energetic performance is simulated using a validated and proprietary simulation tool developed by Abora Solar company. The complete energy system consists of a PVT collector, a water storage tank, and the associated DHW demand simulator. The collector energetic performance has reflected following the analysed Global horizontal irradiation and ambient temperature trend. The highest and lowest energy utilization ratio of the collector has been recorded in Reykjavik, Iceland (63%) and Medina, Saudi Arabia (54%) respectively. The highest and lowest exergetic efficiency of the collector has been recorded in Reykjavik, Iceland (23%) and Medina, Saudi Arabia (17%) respectively. The exergetic efficiency collector has shown better performance with the less ambient temperature and less quality of work in high ambient ...