Assessing the spatiotemporal patterns and impacts of droughts in the Orinoco river basin using earth observations data and surface observations

Droughts impact the water cycle, ecological balance, and socio-economic development in various regions around the world. The Orinoco River Basin is a region highly susceptible to droughts. The basin supports diverse ecosystems and supplies valuable resources to local communities. We assess the spati...

Full description

Bibliographic Details
Published in:Hydrology
Main Authors: Paredes-Trejo, Franklin, Olivares, Barlin O., Movil-Fuentes, Yair, Arevalo-Groening, Juan, Gil, Alfredo
Format: Article in Journal/Newspaper
Language:English
Published: MDPI 2023
Subjects:
Online Access:http://hdl.handle.net/10396/26002
Description
Summary:Droughts impact the water cycle, ecological balance, and socio-economic development in various regions around the world. The Orinoco River Basin is a region highly susceptible to droughts. The basin supports diverse ecosystems and supplies valuable resources to local communities. We assess the spatiotemporal patterns and impacts of droughts in the basin using remote sensing data and surface observations. We use monthly precipitation (P), air temperature near the surface (T2M), enhanced vegetation index (EVI) derived from Earth observations, and average daily flow (Q) data to quantify drought characteristics and impacts. We also investigated the association between drought and global warming by correlating the drought intensity and the percentage of dry area with sea surface temperature (SST) anomalies in the Pacific (Niño 3.4 index), Atlantic (North Atlantic Index [NATL]), and South Atlantic Index [SATL]) oceans. We evaluate the modulating effect of droughts on the hydrological regime of the most relevant tributaries by calculating the trend and significance of the regional standardized precipitation index (SPI) and percentage area affected by dry conditions. El Niño events worsen the region’s drought conditions (SPI vs. Niño 3.4 index, r = −0.221), while Atlantic SST variability has less influence on the basin’s precipitation regime (SPI vs. NATL and SATL, r = 0.117 and −0.045, respectively). We also found that long-term surface warming trends aggravate drought conditions (SPI vs. T2M anomalies, r = −0.473), but vegetation greenness increases despite high surface temperatures (SPI vs. EVI anomalies, r = 0.284). We emphasize the irregular spatial-temporal patterns of droughts in the region and their profound effects on the ecological flow of rivers during prolonged hydrological droughts. This approach provides crucial insights into potential implications for water availability, agricultural productivity, and overall ecosystem health. Our study underlines the urgent need for adaptive management strategies to ...