Centaur 2013 VZ70: Debris from Saturn’s irregular moon population?

Context. Saturn has an excess of irregular moons. This is thought to be the result of past collisional events. Debris produced during such episodes in the neighborhood of a host planet can evolve into co-orbitals trapped in quasi-satellite and/or horseshoe resonant states. A recently announced centa...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Fuente Marcos, Carlos de la, Fuente Marcos, Raúl de la
Format: Article in Journal/Newspaper
Language:Spanish
Published: EDP Sciences 2022
Subjects:
Online Access:https://eprints.ucm.es/id/eprint/73981/
https://eprints.ucm.es/id/eprint/73981/1/delafuente_centaur2013-by.pdf
https://www.edpsciences.org/en/
https://doi.org/10.1051/0004-6361/202142166
Description
Summary:Context. Saturn has an excess of irregular moons. This is thought to be the result of past collisional events. Debris produced during such episodes in the neighborhood of a host planet can evolve into co-orbitals trapped in quasi-satellite and/or horseshoe resonant states. A recently announced centaur, 2013 VZ70, follows an orbit that could be compatible with those of prograde Saturn’s co-orbitals. Aims. We perform an exploration of the short-term dynamical evolution of 2013 VZ70 to confirm or reject a co-orbital relationship with Saturn. A possible connection with Saturn’s irregular moon population is also investigated. Methods. We studied the evolution of 2013 VZ70 backward and forward in time using N-body simulations, factoring uncertainties into the calculations. We computed the distribution of mutual nodal distances between this centaur and a sample of moons. Results. We confirm that 2013 VZ70 is currently trapped in a horseshoe resonant state with respect to Saturn but that it is a transient co-orbital. We also find that 2013 VZ70 may become a quasi-satellite of Saturn in the future and that it may experience brief periods of capture as a temporary irregular moon. This centaur might also pass relatively close to known irregular moons of Saturn. Conclusions. Although an origin in trans-Neptunian space is possible, the hostile resonant environment characteristic of Saturn’s neighborhood favors a scenario of in situ formation via impact, fragmentation, or tidal disruption as 2013 VZ70 can experience encounters with Saturn at very low relative velocity. An analysis of its orbit within the context of those of the moons of Saturn suggests that 2013 VZ70 could be related to the Inuit group, particularly Siarnaq, the largest and fastest rotating member of the group.