Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol

Atmospheric Composition Modeling and Analysis Program (ACMAP) NASA. The data used in the study are available via the Climate Change Modelling Information (CCMI) project. (EU) Itiswellestablished that increasing greenhouse gases, notably CO2, will cause an acceleration of the stratospheric Brewer-Dob...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Polvani, Lorenzo M., Ábalos Álvarez, Marta, Garcia, Rolando, Kinnison, Doug, Randel, William J.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2018
Subjects:
Online Access:https://hdl.handle.net/20.500.14352/108333
https://doi.org/10.1002/2017gl075345
_version_ 1821708901457854464
author Polvani, Lorenzo M.
Ábalos Álvarez, Marta
Garcia, Rolando
Kinnison, Doug
Randel, William J.
author_facet Polvani, Lorenzo M.
Ábalos Álvarez, Marta
Garcia, Rolando
Kinnison, Doug
Randel, William J.
author_sort Polvani, Lorenzo M.
collection Docta Complutense (Universidad Complutense de Madrid - UCM)
container_issue 1
container_start_page 401
container_title Geophysical Research Letters
container_volume 45
description Atmospheric Composition Modeling and Analysis Program (ACMAP) NASA. The data used in the study are available via the Climate Change Modelling Information (CCMI) project. (EU) Itiswellestablished that increasing greenhouse gases, notably CO2, will cause an acceleration of the stratospheric Brewer-Dobson circulation (BDC) by the end of this century. We here present compelling newevidence that ozone depleting substances are also key drivers of BDC trends. We do so by analyzing and contrasting small ensembles of “single-forcing” integrations with a stratosphere resolving atmospheric model with interactive chemistry, coupled to fully interactive ocean, land, and sea ice components. First, confirming previous work, we show that increasing concentrations of ozone depleting substances have contributed a large fraction of the BDC trends in the late twentieth century. Second, we show that the phasing out of ozone depleting substances in coming decades—as a consequence of the Montreal Protocol—will cause a considerable reduction in BDC trends until the ozone hole is completely healed, toward the end of the 21st century. National Science Foundation (US) National Aeronautics and Space Administration (US) Comunidad de Madrid Department of Energy (US) Depto. de Física de la Tierra y Astrofísica Fac. de Ciencias Físicas TRUE pub
format Article in Journal/Newspaper
genre Sea ice
genre_facet Sea ice
id ftunivcmadrid:oai:docta.ucm.es:20.500.14352/108333
institution Open Polar
language English
op_collection_id ftunivcmadrid
op_container_end_page 409
op_doi https://doi.org/20.500.14352/10833310.1002/2017gl075345
op_relation 2016-T2/AMB-1405
Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., & Randel, W. J. (2018). Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophysical Research Letters, 45(1), 401-409.
https://hdl.handle.net/20.500.14352/108333
doi:10.1002/2017gl075345
op_rights Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
open access
publishDate 2018
publisher American Geophysical Union
record_format openpolar
spelling ftunivcmadrid:oai:docta.ucm.es:20.500.14352/108333 2025-01-17T00:45:42+00:00 Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol Polvani, Lorenzo M. Ábalos Álvarez, Marta Garcia, Rolando Kinnison, Doug Randel, William J. 2018-01-08 application/pdf https://hdl.handle.net/20.500.14352/108333 https://doi.org/10.1002/2017gl075345 eng eng American Geophysical Union 2016-T2/AMB-1405 Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., & Randel, W. J. (2018). Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophysical Research Letters, 45(1), 401-409. https://hdl.handle.net/20.500.14352/108333 doi:10.1002/2017gl075345 Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ open access 551.51 Chemistry-climate model Stratospheric transport Middle atmosphere Chlorofluorocarbons Troposphere Exchange Impact Mass Ais Física atmosférica 2501 Ciencias de la Atmósfera journal article VoR 2018 ftunivcmadrid https://doi.org/20.500.14352/10833310.1002/2017gl075345 2024-09-27T00:06:47Z Atmospheric Composition Modeling and Analysis Program (ACMAP) NASA. The data used in the study are available via the Climate Change Modelling Information (CCMI) project. (EU) Itiswellestablished that increasing greenhouse gases, notably CO2, will cause an acceleration of the stratospheric Brewer-Dobson circulation (BDC) by the end of this century. We here present compelling newevidence that ozone depleting substances are also key drivers of BDC trends. We do so by analyzing and contrasting small ensembles of “single-forcing” integrations with a stratosphere resolving atmospheric model with interactive chemistry, coupled to fully interactive ocean, land, and sea ice components. First, confirming previous work, we show that increasing concentrations of ozone depleting substances have contributed a large fraction of the BDC trends in the late twentieth century. Second, we show that the phasing out of ozone depleting substances in coming decades—as a consequence of the Montreal Protocol—will cause a considerable reduction in BDC trends until the ozone hole is completely healed, toward the end of the 21st century. National Science Foundation (US) National Aeronautics and Space Administration (US) Comunidad de Madrid Department of Energy (US) Depto. de Física de la Tierra y Astrofísica Fac. de Ciencias Físicas TRUE pub Article in Journal/Newspaper Sea ice Docta Complutense (Universidad Complutense de Madrid - UCM) Geophysical Research Letters 45 1 401 409
spellingShingle 551.51
Chemistry-climate model
Stratospheric transport
Middle atmosphere
Chlorofluorocarbons
Troposphere
Exchange
Impact
Mass
Ais
Física atmosférica
2501 Ciencias de la Atmósfera
Polvani, Lorenzo M.
Ábalos Álvarez, Marta
Garcia, Rolando
Kinnison, Doug
Randel, William J.
Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title_full Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title_fullStr Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title_full_unstemmed Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title_short Significant weakening of Brewer‐Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol
title_sort significant weakening of brewer‐dobson circulation trends over the 21st century as a consequence of the montreal protocol
topic 551.51
Chemistry-climate model
Stratospheric transport
Middle atmosphere
Chlorofluorocarbons
Troposphere
Exchange
Impact
Mass
Ais
Física atmosférica
2501 Ciencias de la Atmósfera
topic_facet 551.51
Chemistry-climate model
Stratospheric transport
Middle atmosphere
Chlorofluorocarbons
Troposphere
Exchange
Impact
Mass
Ais
Física atmosférica
2501 Ciencias de la Atmósfera
url https://hdl.handle.net/20.500.14352/108333
https://doi.org/10.1002/2017gl075345