Understanding moult patterns in Albatrosses and Petrels breeding on Marion and Gough Islands

Moult is an energetically demanding process for birds, and the replacement of flight feathers impacts flight performance. As a result, few birds overlap moult with other key activities such as breeding or migrating. Feather growth rates show little change in relation to body size, so large birds wit...

Full description

Bibliographic Details
Main Author: Osborne, Alexis
Other Authors: Ryan, Peter
Format: Master Thesis
Language:English
Published: Faculty of Science 2020
Subjects:
Online Access:http://hdl.handle.net/11427/32321
https://open.uct.ac.za/bitstream/11427/32321/1/thesis_sci_2020_osborne%20alexis.pdf
Description
Summary:Moult is an energetically demanding process for birds, and the replacement of flight feathers impacts flight performance. As a result, few birds overlap moult with other key activities such as breeding or migrating. Feather growth rates show little change in relation to body size, so large birds with long flight feathers take a long time to grow individual feathers, making their moult even more challenging. Unless these birds can afford to become flightless for several weeks while they replace all their flight feathers simultaneously, many large birds lack sufficient time to breed and replace all their wing feathers each year. As a result, they have evolved complex moult strategies that replace a subset of feathers each year. Albatrosses and giant petrels are prime examples of birds facing this challenge. This study focusses on Wandering Albatrosses (Diomedea exulans) and Northern Giant Petrels (Macronectes halli) breeding at Marion Island and Southern Giant Petrels (M. giganteus) at Gough Island. I explore primary and secondary moult patterns in Wandering Albatrosses and secondary and greater secondary coverts in giant petrels in relation to breeding activity. I used digital photography to record the wear patterns in the wings of Wandering Albatrosses and giant petrels. Using photographs of upperwings of marked individuals over time allowed the opportunity to track changes in the wear pattern among specific feathers, although scoring feather wear from images works better for darker feathers. The rate of wear among secondaries and their coverts differed across the wing, with the inner feathers wearing faster than the central feathers. Photographing the extended wings of albatrosses and petrels incubating eggs had no impact on hatching success. Using this method I was able to test the often held assumption that wing feather moult is largely symmetrical. In Wandering Albatrosses, moult symmetry was greatest in outer flight feathers, especially primaries. However, the pattern of increasing asymmetry towards the ...