Reproductive ecology and life history trade-offs in a dimorphic polygynous mammal, the New Zealand fur seal

Polygyny is the most common mating system in mammalian species (95%), yet our understanding of polygynous systems and microevolutionary processes is still limited. Pinniped mating systems range from extreme polygyny (e.g. elephant seals) to sequential female defence by males and hence have often bee...

Full description

Bibliographic Details
Main Author: Negro, Sandra Silvia
Format: Other/Unknown Material
Language:English
Published: University of Canterbury. School of Biological Sciences 2008
Subjects:
Online Access:http://hdl.handle.net/10092/2505
https://doi.org/10.26021/9253
Description
Summary:Polygyny is the most common mating system in mammalian species (95%), yet our understanding of polygynous systems and microevolutionary processes is still limited. Pinniped mating systems range from extreme polygyny (e.g. elephant seals) to sequential female defence by males and hence have often been used as models for mating system studies. Parentage analysis has enabled the examination of mating success, the identification of pedigrees, and the elucidation of social organisation, greatly enhancing our understanding of mating systems (Chapter 1). However, such analyses are not without pitfalls, with erroneous assignments common in open systems (i.e. when parental and offspring samplings are incomplete). We investigated the effects of the user-defined parameters on the accuracy of parental assignment using two commonly used parental allocation programme, CERVUS and PASOS (Chapter 2). We showed that inaccurate user-defined parameters in CERVUS and PASOS can lead to highly biased output e.g. the assignment rate at 95% CL of offspring with a sampled known mother to sampled males decreased from 58% to 32% when the proportion of candidate males sampled in the parameter options decreasing 4-fold. We found that the use of both CERVUS and PASOS for parentage assignment can increase the likelihood of correctly allocating offspring to sampled parents to 97% in our study system. Incorrect parental assignment can bias estimates of various biological parameters, such as lifetime reproductive success and mate choice preference, and hence bias ecological and evolutionary interpretations. Here, we propose solutions to increase the power of parentage assignment and hence decrease the bias in biological parameter estimates. In addition, we analysed the effects of the intrinsic bias in likelihood assignment approaches towards assigning higher probability of parentage on individuals with rare alleles and those with heightened offspring-parent matches, which increase with the number of homozygous loci (Chapter 3). We showed that, as ...