Assessment of Antarctic sea ice by surface validated satellite measurements

Satellite investigations have documented Antarctic sea ice area, but are restricted in their ability to provide volume, as the procedure to derive thickness is still under development. This procedure requires the measurement of sea ice freeboard, the segment of ice held above the ocean surface by bu...

Full description

Bibliographic Details
Main Author: Price, Daniel David Frederick
Format: Other/Unknown Material
Language:English
Published: University of Canterbury. Gateway Antarctica 2014
Subjects:
GPS
Online Access:http://hdl.handle.net/10092/11111
https://doi.org/10.26021/5964
Description
Summary:Satellite investigations have documented Antarctic sea ice area, but are restricted in their ability to provide volume, as the procedure to derive thickness is still under development. This procedure requires the measurement of sea ice freeboard, the segment of ice held above the ocean surface by buoyancy. This measurement can be made by satellite altimeters and in conjunction with density and snow depth information; sea ice thickness can be estimated via the hydrostatic equilibrium assumption. The ability to monitor the spatial and temporal characteristics of the thickness distribution must be improved as we strive to understand the linkages between the glaciological, atmospheric and oceanic components of the Antarctic climate system. A key sector in which these components interact is the Antarctic coast. There, offshore winds drive coastal polynyas creating vast amounts of sea ice, and ice shelf interaction modifies ocean properties. Together they condition the ocean for downwelling, driving the global oceanic circulation. In light of this, the coastal Antarctic is a fundamental region in regard to Antarctic sea ice processes and the Earth climate system. McMurdo Sound occupies a coastal area in proximity to an ice shelf in the south-western corner of the Ross Sea. The sound has witnessed scientific investigation for over a century with a fully established research programme since the 1960s. However, the sea ice research in this region is spatially restricted. This thesis aims to expand the knowledge of sea ice in McMurdo Sound to a larger area using space-borne remote sensing instrumentation and design of in situ measurement campaigns. In doing so, this work evaluates the capabilities of satellite platforms to record sea ice freeboard in the coastal Antarctic, whilst developing knowledge of ice shelf-sea ice interaction. This work provides the first satellite altimeter based investigation of sea ice freeboard in McMurdo Sound using ICESat over the period 2003-2009. No observable trend was observed for ...