Biogeochemical investigations of methane-rich groundwaters in high Arctic glacial catchments

Permafrost and glaciers in the high Arctic form a near-impermeable ‘cryospheric cap’ that traps a potentially large reservoir of sub-surface methane and prevents it from reaching the atmosphere. The vulnerability of the cryosphere to climate warming is making releases of this methane possible, but u...

Full description

Bibliographic Details
Main Author: Kleber, Gabrielle
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Cambridge 2023
Subjects:
Online Access:https://www.repository.cam.ac.uk/handle/1810/354051
https://doi.org/10.17863/CAM.100060
Description
Summary:Permafrost and glaciers in the high Arctic form a near-impermeable ‘cryospheric cap’ that traps a potentially large reservoir of sub-surface methane and prevents it from reaching the atmosphere. The vulnerability of the cryosphere to climate warming is making releases of this methane possible, but uncertainty in the magnitude and timing of such releases makes predictions of Arctic greenhouse gas emissions difficult. In Svalbard, where air temperatures are rising more than twice as fast as the average for the Arctic, glaciers are retreating and leaving behind exposed forefields that enable rapid methane escape. Through an extensive spatial study of proglacial groundwater springs on Svalbard, groundwater systems within glaciated catchments are found to be bringing to the surface deep-seated methane gas that was previously trapped beneath glaciers and permafrost in the Arctic. In this thesis, I estimate the amount of methane being released by such springs and discuss its origin. Through a temporal study conducted at a single glacial catchment, Vallåkrabreen, I use biogeochemical data collected from groundwaters during two melt seasons to investigate the sources of groundwaters and the origin of the methane they transport to the surface. Waters collected from 123 groundwater springs in the forefields of 78 land-terminating glaciers are supersaturated with methane up to 600,000-times greater than atmospheric equilibration. The spatial sampling revealed a geologic control on the extent of methane supersaturation, with strong evidence of a thermogenic source. I estimate annual methane emissions from proglacial groundwaters could be up to 2.31 kt across the Svalbard archipelago. Further investigations into marine-terminating glaciers indicate emergent methane emissions as these glaciers transition into fully land-based glaciers. My findings within the Vallåkrabreen catchment demonstrate an interconnected hydrological system where shallow and deep groundwaters mix to moderate methane emissions. During summer, deep ...