First report of paired ventral endites in a hurdiid radiodont.

BACKGROUND: Radiodonta, large Palaeozoic nektonic predators, occupy a pivotal evolutionary position as stem-euarthropods and filled important ecological niches in early animal ecosystems. Analyses of the anatomy and phylogenetic affinity of these large nektonic animals have revealed the origins of t...

Full description

Bibliographic Details
Main Authors: Pates, Stephen, Daley, Allison C, Butterfield, Nicholas J
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science and Business Media LLC 2020
Subjects:
Online Access:https://www.repository.cam.ac.uk/handle/1810/306668
https://doi.org/10.17863/CAM.53755
Description
Summary:BACKGROUND: Radiodonta, large Palaeozoic nektonic predators, occupy a pivotal evolutionary position as stem-euarthropods and filled important ecological niches in early animal ecosystems. Analyses of the anatomy and phylogenetic affinity of these large nektonic animals have revealed the origins of the euarthropod compound eye and biramous limb, and interpretations of their diverse feeding styles have placed various radiodont taxa as primary consumers and apex predators. Critical to our understanding of both radiodont evolution and ecology are the paired frontal appendages; however, the vast differences in frontal appendage morphology between and within different radiodont families have made it difficult to identify the relative timings of character acquisitions for this body part. RESULTS: Here we describe a new genus of hurdiid, Ursulinacaris, from the middle Cambrian (Miaolingian, Wuliuan) Mount Cap Formation (Northwest Territories, Canada) and Jangle Limestone (Nevada, USA). Ursulinacaris has the same organisation as other hurdiid frontal appendages, with elongate endites on the first five podomeres in the distal articulated region and auxiliary spines on the distal margin of endites only. Unlike all other hurdiid genera, which possess a single row of elongated and blade-like ventral endites, this taxon uniquely bears paired slender endites. CONCLUSION: The blade-like endite morphology is shown to be a hurdiid autapomorphy. Two other frontal appendage characters known only in hurdiids, namely auxiliary spines on the distal margin of endites only, and elongate endites on the first five podomeres in the distal articulated region only, predate this innovation.