Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland

© 2018 All rights reserved. Remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet (GrIS); however, most satellite records must trade off higher spatial resolution for higher temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue...

Full description

Bibliographic Details
Main Authors: Williamson, AG, Banwell, AF, Willis, IC, Arnold, NS
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Online Access:https://www.repository.cam.ac.uk/handle/1810/285168
https://doi.org/10.17863/CAM.32538
Description
Summary:© 2018 All rights reserved. Remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet (GrIS); however, most satellite records must trade off higher spatial resolution for higher temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes at high spatial resolution (10-30 m) with a frequent revisit time ( ~ 3 days). We achieve this by mosaicking imagery from the Landsat 8 Operational Land Imager (OLI) with imagery from the recently launched Sentinel-2 Multispectral Instrument (MSI) for a ~ 12 000 km2area of West Greenland in the 2016 melt season. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence between the two sets of values (R2Combining double low line 0.841; RMSE Combining double low line 0.555 m). This provides us with the methodological basis for automatically calculating lake areas, depths, and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid ( ≤ 4 day) lake-drainage identification. With the dual Sentinel-2-Landsat 8 record, we identify 184 rapidly draining lakes, many more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal resolution, or would be possible with MODIS, due to its omission of small lakes < 0.125 km2. Finally, we estimate the water volumes drained into the GrIS during rapid-lake-drainage events and, by analysing downscaled regional climate-model (RACMO2.3p2) run-off data, the water quantity that enters the GrIS via the moulins ...