Carbon systematics of the Icelandic crust and mantle

In recent decades there has been an increased interest in the carbon content of Earth’s geochemical reservoirs due to the impact of atmospheric carbon on the habitability of our planet. Earth’s interior likely hosts a greater mass of carbon than that of the oceans, atmosphere and crust combined, whi...

Full description

Bibliographic Details
Main Author: Miller, William George Russell
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: King's 2018
Subjects:
Online Access:https://doi.org/10.17863/CAM.22850
https://www.repository.cam.ac.uk/handle/1810/275599
Description
Summary:In recent decades there has been an increased interest in the carbon content of Earth’s geochemical reservoirs due to the impact of atmospheric carbon on the habitability of our planet. Earth’s interior likely hosts a greater mass of carbon than that of the oceans, atmosphere and crust combined, which has buffered the carbon content of the atmosphere over geological time. Yet only a few direct measurements of carbon from the upper mantle, and none from the lower mantle, have been made. Undegassed basalts erupted at mid-ocean ridges have previously been used to estimate the carbon content of the upper mantle. However, due to the low solubility of carbon within silicate melt, these undegassed basalt suites are rare. The majority of basalts have lost their mantle carbon information en route to eruption through the crust. Various crustal processes act to modify the geochemistry of melts before eruption, therefore it is important to be able to characterise the effect of these processes to better interpret the volatile signals preserved in erupted products. Pressure, and therefore depth, is a key parameter controlling volatile solubility and can be estimated using a variety of igneous barometers. This thesis presents results from crys- tallisation experiments conducted on basaltic glass from the Miðfell eruption, Iceland. The experiments provide new data that has been used to test a variety of barometers and crystalli- sation models used by igneous petrologists, and could aid future barometer recalibration. A key part of this work was the development of an experimental method for stabilising 5 kbar conditions in a piston cylinder apparatus. The experiments have shown that clinopyroxene- liquid barometry is more reliable than multi-reaction barometry. However, knowledge of equilibrium clinopyroxene compositions is crucial for accurately determining pressure using the clinopyroxene-liquid barometer. More experiments conducted at mid-crustal pressures are required for a full recalibration of these barometers. The results ...