Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins

© 2015 Elsevier B.V. Grounding-zone wedges (GZWs) are asymmetric sedimentary depocentres which form through the rapid accumulation of glacigenic debris along a line-source at the grounding zone of marine-terminating ice sheets during still-stands in ice-sheet retreat. GZWs form largely through the d...

Full description

Bibliographic Details
Main Authors: Batchelor, CL, Dowdeswell, JA
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2015
Subjects:
Online Access:https://www.repository.cam.ac.uk/handle/1810/247712
Description
Summary:© 2015 Elsevier B.V. Grounding-zone wedges (GZWs) are asymmetric sedimentary depocentres which form through the rapid accumulation of glacigenic debris along a line-source at the grounding zone of marine-terminating ice sheets during still-stands in ice-sheet retreat. GZWs form largely through the delivery of deforming subglacial sediments. The presence of GZWs in the geological record indicates an episodic style of ice retreat punctuated by still-stands in grounding-zone position. Moraine ridges and ice-proximal fans may also build up at the grounding zone during still-stands of the ice margin, but these require either considerable vertical accommodation space or sediment derived from point-sourced subglacial meltwater streams. By contrast, GZWs form mainly where floating ice shelves constrain vertical accommodation space immediately beyond the grounding-zone. An inventory of GZWs is compiled from available studies of bathymetric and acoustic data from high-latitude continental margins. The locations and dimensions of GZWs from the Arctic and Antarctic, alongside a synthesis of their key architectural and geomorphic characteristics, are presented. GZWs are only observed within cross-shelf troughs and major fjord systems, which are the former locations of ice streams and fast-flowing outlet glaciers. Typical high-latitude GZWs are less than 15. km in along-flow direction and 15 to 100. m thick. GZWs possess a transparent to chaotic acoustic character, which reflects the delivery of diamictic subglacial debris. Many GZWs contain seaward-dipping reflections, which indicate sediment progradation and wedge-growth through continued delivery of basal sediments. GZW formation is inferred to require high rates of sediment delivery to a fast-flowing ice margin that is relatively stable for probably decades to centuries. Although the long-term stability of the grounding zone is controlled by ice-sheet mass balance, the precise location of any still-stands is influenced strongly by the geometry of the continental shelf. ...