An unexpected journey: experimental insights into magma and volatile transport beneath Erebus volcano, Antarctica
Erebus is a well-studied open-vent volcano located on Ross Island, Antarctica (77◦ 32’ S, 167◦ 10’ E). The volcano is the focus of ongoing research aimed at combining petrologic data and experiments with surface gas observations in order to interpret degassing histories and the role of volatiles in...
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
Department of Geography
2014
|
Subjects: | |
Online Access: | https://doi.org/10.17863/CAM.16442 https://www.repository.cam.ac.uk/handle/1810/245333 |
Summary: | Erebus is a well-studied open-vent volcano located on Ross Island, Antarctica (77◦ 32’ S, 167◦ 10’ E). The volcano is the focus of ongoing research aimed at combining petrologic data and experiments with surface gas observations in order to interpret degassing histories and the role of volatiles in magma differentiation, redox evolution, and eruptive style. This research focus has been driven in part by an abundance of studies on various aspects of the Erebus system, such as physical volcanology, gas chemistry, petrology, melt inclusion research, seismic, and more. Despite this large data set, however, interpretations of Erebus rocks, particularly mafic and intermediate lavas, which are thought to originate from deep within the magmatic plumbing system, have been hindered due to a lack of experimental data. Experimental petrology is a common tool used to understand volcanic plumb- ing systems and to tie observations made at the Earth’s surface to the deep pro- cesses responsible for driving volcanic activity. Experimental petrologists essen- tially recreate natural magma chambers in miniature by subjecting lavas to con- ditions of pressure, temperature, and volatile chemistry (P-T-X) relevant to a natural underground volcanic system. Because many important parameters can be constrained in the laboratory, the comparison of experimental products with naturally erupted ones allows for an understanding of the formation conditions of the rocks and gases we see at the surface. In this thesis, I have employed experimental and analytical petrological tech- niques to investigate the magmatic plumbing system of Erebus volcano. Broadly, the research is focused on volatiles (namely H2O, CO2, and S species) in the Ere- bus system: their abundances, solubilities, interactions, evolution, and ultimate contributions to degassing. Specifically, three key themes have been investigated, each employing their own experimental and analytical techniques. Firstly, the mixed volatile H2O-CO2 solubility in Erebus phonotephrite has been ... |
---|