Comparison of In Situ and AVHRR-Derived Broadband Albedo over Arctic Sea Ice

Advanced Very High Resolution Radiometer (AVHRR) data are used to extract broadband sea ice surface albedos from narrowband channel 1 and 2 top of the atmosphere (TOA) radiances. Corrections for the intervening atmosphere, viewing geometry and sensor spectral response are applied to the satellite da...

Full description

Bibliographic Details
Published in:ARCTIC
Main Authors: De Abreu, R.A., Key, J., Maslanik, J.A., Serreze, M.C., LeDrew, E.F.
Format: Article in Journal/Newspaper
Language:English
Published: The Arctic Institute of North America 1994
Subjects:
Online Access:https://journalhosting.ucalgary.ca/index.php/arctic/article/view/64354
Description
Summary:Advanced Very High Resolution Radiometer (AVHRR) data are used to extract broadband sea ice surface albedos from narrowband channel 1 and 2 top of the atmosphere (TOA) radiances. Corrections for the intervening atmosphere, viewing geometry and sensor spectral response are applied to the satellite data. Atmospheric correction increases TOA albedos by 27 to 32%. After removing the effects of viewing geometry, surface albedo variability between orbits decreases. The satellite-derived surface albedo over snow-covered sea ice corrected for viewing geometry ranged from 0.68 to 0.82. The residual diurnal variability is attributed to uncertainties in the atmospheric and anisotropic corrections of the satellite data. After comparison with coincidental in situ measurements, AVHRR pixel. In order to develop a reliable methodology for using these satellite data to derive sea ice albedo, an improved understanding of both the atmosphere's behavior over the long path lengths common to the Arctic and the anisotropic nature of snow-covered sea ice reflectance is required. Furthermore, any seasonal characteristics of these factors must be addressed.Key words: sea ice, albedo, remote sensing, AVHRR, anisotropy On utilise des données obtenues par radiomètre perfectionné à très haute résolution pour extraire des albédos à large bande de la surface de la glace à partir de luminances du sommet de l'atmosphère du canal 1 et 2 à bande étroite. On applique aux données par satellite des corrections pour l'atmosphère intermédiaire, l'angle de prise de vue et la réponse spectrale des capteurs. La correction atmosphérique augmente les albédos du sommet de l'atmosphère de 27 à 32 p. cent. Après avoir éliminé l'influence de l'angle de prise de vue, la variabilité de l'albédo de la surface entre les orbites diminue. L'albédo de la surface obtenu par satellite sur la glace de mer couverte de neige après correction pour l'angle de prise de vue allait de 0,68 à 0,82. On attribue la variabilité résiduelle diurne à des incertitudes dans les corrections atmosphérique et anisotrope des données obtenues par satellite. Après comparaison avec des mesures correspondantes effectuées in situ, les albédos obtenus à l'aide du radiomètre perfectionné à très haute résolution et corrigés pour l'atmosphère intermédiaire et l'angle de prise de vue concordaient d'assez près avec les mesures effectuées à la surface même. La grande variabilité dans les mesures de surface reflète la difficulté qu'il y a à mesurer les albédos de surface dans des régions correspondant à celles d'un pixel typique obtenu à l'aide d'un radiomètre perfectionné à très haute résolution. De façon à développer une méthodologie fiable permettant d'utiliser ces données par satellite pour obtenir l'albédo de la glace de mer, on a besoin de mieux comprendre à la fois le comportement de l'atmosphère sur les grandes longueurs de couloir communes à l'Arctique et la nature anisotrope de la réflectance de la glace de mer couverte de neige. Il faut en outre tenir compte de toute caractéristique saisonnière pertinente à ces facteurs.Mots clés: glace de mer, albédo, télédétection, radiomètre perfectionné à très haute résolution, anisotropie