Post-Horse River Wildfire Surface Water Quality Monitoring Using the Water Cytotoxicity Test

Version 1.0 - External Review Draft. Supporting Dataset can be found at: Kinniburgh, David; Huang, Dorothy; Moe, Birget; Dey, Indranil; Luong, Jennie; Xie, Li; Tesfazgy, Milly; Demofsky, Paige; Parmentier, Spencer; Gabos, Stephan; Zhang, Weiping; Reichert, Megan; Wang, Nina Ching Yi; Ellehoj, Erik;...

Full description

Bibliographic Details
Main Authors: Kinniburgh, David, Huang, Dorothy, Moe, Birget, Dey, Indranil, Luong, Jennie, Xie, Li, Tesfazgy, Milly, Demofsky, Paige, Parmentier, Spencer, Gabos, Stephan, Zhang, Weiping, Reichert, Megan, Wang, Nina Ching Yi, Ellehoj, Erik, Hatfield Consultants
Format: Report
Language:English
Published: Physiology & Pharmacology 2022
Subjects:
Moe
Online Access:http://hdl.handle.net/1880/115412
https://doi.org/10.11575/PRISM/40391
Description
Summary:Version 1.0 - External Review Draft. Supporting Dataset can be found at: Kinniburgh, David; Huang, Dorothy; Moe, Birget; Dey, Indranil; Luong, Jennie; Xie, Li; Tesfazgy, Milly; Demofsky, Paige; Parmentier, Spencer; Gabos, Stephan; Zhang, Weiping; Reichert, Megan; Wang, Nina Ching Yi; Ellehoj, Erik; Hatfield Consultants, 2023, "Dataset for: Post-Horse River Wildfire Surface Water Quality Monitoring Using the Water Cytotoxicity Test", https://doi.org/10.5683/SP3/ICGLUE, Borealis, V1. The 2016 Horse River wildfire had a significant environmental impact on the Regional Municipality of Wood Buffalo (RMWB) in Northern Alberta, with a burn area exceeding 580,000 hectares. To understand the impact of this unprecedented event on water quality in the RMWB, water samples were collected from surface waters, drinking water treatment plants, wastewater treatment plants, and taps over the three-year period immediately proceeding the wildfire, beginning in May 2017. Samples were collected from sites directly impacted by the Horse River wildfire (Fort McMurray), as well as sites upstream (Athabasca) and downstream (Fort McKay, Fort Chipewyan) from the impacted area. Each water sample was tested using the cell-based water cytotoxicity assay, an in-house developed bioassay with quality control criteria and previous application to environmental testing. The underlying technology of the assay allows for non-invasive and continuous monitoring of human HepG2 cells, providing more human health relevant toxicity information than traditional assays with non-mammalian targets. Comparative toxicity values incorporating both concentration and temporal cellular response data were determined for each sample, allowing for the identification of trends across geographic location, source (surface, treatment plant, tap), and time. Complementary chemical analysis, including routine water chemistry and trace element analysis, was also performed to evaluate chemical components that may have influenced the measured cellular response and to observe ...