Forest Fire Danger/Risk Forecasting: A Remote Sensing Approach
Forest/wildland fires are natural disasters that create a significant threat to the communities living in the vicinity of the forested landscape. To minimize the risk concerning resiliency of those urban communities to forest fires, my overall objective was to develop primarily remote sensing (RS)-b...
Main Author: | |
---|---|
Other Authors: | , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
Schulich School of Engineering
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/1880/111739 https://doi.org/10.11575/PRISM/37640 |
Summary: | Forest/wildland fires are natural disasters that create a significant threat to the communities living in the vicinity of the forested landscape. To minimize the risk concerning resiliency of those urban communities to forest fires, my overall objective was to develop primarily remote sensing (RS)-based models assessing potential risks at the wildland-urban interface (WUI) and making predictions of danger conditions in the environs forest/vegetation. I investigated the risks associated with WUI for the Fort McMurray community and danger conditions in the northern part of Alberta, Canada. For developing the risk modelling framework at WUI, I employed primarily a WorldView-2 satellite image acquired on June 06, 2016. I estimated structural damages due to the devastating 2016 Horse River wildland fire (HRF) that entered the community on May 03, 2016. Besides, I analyzed the presence of vegetation at the WUI to identify the associated risks according to the FireSmart Canada guidelines. My remote sensing-based estimates of the number of structural damages identified a strong linear relationship (i.e., r2 value of 0.97) with the ground-based estimates. Besides, all damaged structures were found associated with the existence of vegetation within the 30m buffer/priority zone of the WUI. It was revealed that approximately 30% of the areas of the WUI were vulnerable due to the presence of vegetation, in which approximately 7% were burned during the 2016 HRF event that led the structural damages. In addition, I developed a new medium-term (i.e., four days) model to forecast forest fire danger conditions using RS-derived biophysical variables of vegetation. I primarily employed Terra MODIS (moderate resolution imaging spectroradiometer)-derived four-day composites of daily surface temperature, normalized difference vegetation index and normalized difference water index. The model was able to detect about 75% of the fire events in the top two danger classes (i.e., very high and high) when evaluated with the historical ... |
---|